
487

C H A P T E R 2 8

Scripting Security

IN THIS CHAPTER
Chances are that you’ve had to completely disable scripts in your environment,
thanks to the number of abusive scripts out there. Making scripting a safe part
of your environment can be difficult, so in this chapter, I’ll give you some point-
ers for doing so.

Scripting has two primary security issues associated with it. First, the Win-
dows Script Host (WSH) is included with just about every version of Win-
dows since Windows 98. Second, WSH associates itself with a number of
filename extensions, making it very easy for users to click an e-mail file
attachment and launch unauthorized scripts. The knee-jerk reaction of
many administrators is to simply disable scripting altogether, which also
removes a beneficial administrative tool from the environment. In this
chapter, I’ll focus on ways to address the two primary security issues associ-
ated with scripting, helping you to configure a safer scripting environment.

Why Scripting Can Be Dangerous

“Why can scripting be dangerous?” isn’t a question many administrators
have to ask. Something like 70% of all new viruses, according to some
authorities, are script based; certainly some of the most devastating viruses,
including Nimda, Melissa, and others, propagate at least partially through
scripts sent via e-mail. Even internally produced scripts can be dangerous,
as scripts can delete users, create files, and perform any number—in fact,
an almost unlimited number—of tasks. There’s little question about the
damage scripts can do, making it vitally important that your environment be
secured to allow only those authorized, tested scripts that you or your fellow
administrators authorize.

Perhaps the most dangerous aspect of administrative scripting is the
easy accessibility scripts have to the system. Users can launch scripts

jones.book Page 487 Wednesday, February 25, 2004 2:11 PM

488 Chapter 28 Scripting Security

without even realizing that they’re doing so; a large number of file
extensions are registered to the Windows Script Host, and double-click-
ing any file with one of those extensions launches the script. In Windows
XP, the default script extensions are

■ JS for JScript files
■ JSCRIPT for Jscript files
■ JSE for Jscript encoded files
■ VBE for VBScript encoded files
■ VBS for VBScript files
■ WSC for Windows Script Components
■ WSF for Windows Script Files

Note that older computers may also register VB for VBScript files, SCR
for script files, and other extensions; Windows XP cleaned up the filename
extension list a bit. Don’t forget, of course, static HTML files—with HTML
or HTM filename extensions—which can contain embedded client-side
script.

NOTE Other types of scripts exist, such as the Visual Basic for Applications
(VBA) embedded into Microsoft Office documents. However, I’m going to focus
this discussion on scripts associated or executed by the Windows Script Host.

The goal of any security program should be to allow beneficial, autho-
rized scripts to run, while preventing unauthorized scripts from running.

Security Improvements in Windows XP and Windows
Server 2003

Windows XP and Windows Server 2003 introduce a new concept called
software restriction policies. These policies, which are part of the com-
puter’s local security settings and can be configured centrally through
Group Policy, define the software that may and may not run on a computer.
By default, Windows defines two possible categories that software can fall
into: disallowed, meaning the software won’t run, and unrestricted, mean-
ing the software will run without restriction. Unrestricted is the default sys-
tem security level, meaning that by default all software is allowed to run
without restriction.

jones.book Page 488 Wednesday, February 25, 2004 2:11 PM

Security Improvements in Windows XP and Windows Server 2003 489

Windows also defines rules, which help to categorize software into
either the disallowed or unrestricted categories. By default, Windows
comes with four rules, defining all system software—Windows itself, in
other words—as unrestricted. This way, even if you set the default security
level to disallowed, Windows will continue to be categorized as unre-
stricted.

You can define your own rules, as well.

■ Certificate rules identify software based on the digital certificate used
to sign the software.

■ Hash rules identify software based on a unique checksum, which is
different for any given executable file.

■ Path rules identify software based on its file path. You can also spec-
ify an entire folder, allowing all software in that folder to run or to be
disallowed.

■ Internet Zone rules identify software based on its Internet zone location.

Therefore, you create rules that allow Windows to identify software.
The rules indicate if the identified software belongs to the unrestricted or
disallowed categories. Software not specifically identified in a rule belongs
to whichever category is set to be the system default.

Suppose, for example, that you set the system default level to disal-
lowed. From then on, no software will run unless it is specifically identified
in a rule and categorized as unrestricted. Although it takes a lot of configu-
ration effort to make sure everything is listed as allowed, you can effectively
prevent any unauthorized software—such as scripts—from running on your
users’ computers.

Software restriction policies also define a list of filename extensions that
are considered by Windows to be executable, and the list includes (by
default) many standard WSH scripting filename extensions. The DLL file-
name extension is notably absent from the list. That’s because DLLs never
execute by themselves; they must be called by another piece of software. By
allowing DLLs to run unrestricted, you avoid much of the configuration
hassle you might otherwise expect. For example, you can simply authorize
Excel.exe to run, and not have to worry about the dozens of DLLs it uses,
because they aren’t restricted. The default filename extension list does not
include JS, JSCRIPT, JSE, VBE, VBS, or WSF, and I heartily recommend
that you add them. For example, Figure 28.1 shows that I’ve added VBS to
the list of restricted filenames, forcing scripts to fall under software restric-
tion policies.

jones.book Page 489 Wednesday, February 25, 2004 2:11 PM

490 Chapter 28 Scripting Security

With effective use of software restriction policies, you can gain immedi-
ate and effective control over which scripts run in your environment, as well
as control other types of executable software. One of the most effective
ways to ensure that only your scripts run is to sign them, and then create a
software restriction policy rule that identifies your scripts by their digital
signature.

Digitally Signing Scripts

A signed script includes a digital signature as a block comment within the
file. You need to be using the WSH 5.6 or later XML format, because it con-
tains a specific element for storing the certificate. Take Listing 28.1 as an
example.

➤➤ Script Signer

This script signs another script for you. Just run it with the appropriate
command-line parameters shown, or run it with no parameters to receive
help on the correct usage.

Figure 28.1 Placing VBS files under software restriction policy control

jones.book Page 490 Wednesday, February 25, 2004 2:11 PM

Digitally Signing Scripts 491

Listing 28.1 Signer.vbs. This script signs another one.

<job>
 <runtime>
 <named name="file" helpstring="The script file to sign"
 required="true" type="string" />
 <named name="cert" helpstring="The certificate name"
 Required="true" type="string" />
 <named name="store" helpstring="The certificate store"
 Required="false" type="string" />
 </runtime>
 <script language="vbscript">

 Dim Signer, File, Cert, Store
 If Not WScript.Arguments.Named.Exists("cert") Or _
 Not WScript.Arguments.Named.Exists("file") Then

 WScript.Arguments.ShowUsage()
 WScript.Quit

 End If

 Set Signer = CreateObject("Scripting.Signer")
 File = WScript.Arguments.Named("file")
 Cert = WScript.Arguments.Named("cert")

 If WScript.Arguments.Named.Exists("store") Then
 Store = WScript.Arguments.Named("store")
 Else
 Store " "
 End If

 Signer.SignFile(File, Cert, Store)

 </script>
</job>

➤➤ Script Signer—Explained

This script is stored in an XML format, which describes its command-line
parameters. That’s what the first block of XML does.

jones.book Page 491 Wednesday, February 25, 2004 2:11 PM

492 Chapter 28 Scripting Security

<job>
 <runtime>
 <named name="file" helpstring="The script file to sign"
 required="true" type="string" />
 <named name="cert" helpstring="The certificate name"
 Required="true" type="string" />
 <named name="store" helpstring="The certificate store"
 Required="false" type="string" />
 </runtime>

Then, the actual script begins. It checks first to see that both the “cert”
and “file” command-line arguments were provided; if they weren’t, the
script displays the help information and exits.

 <script language="vbscript">

 Dim Signer, File, Cert, Store
 If Not WScript.Arguments.Named.Exists("cert") Or _
 Not WScript.Arguments.Named.Exists("file") Then

 WScript.Arguments.ShowUsage()
 WScript.Quit

 End If

Assuming everything was provided, the script creates a new Script-
ing.Signer object and passes it the file and certificate command-line argu-
ments.

 Set Signer = CreateObject("Scripting.Signer")
 File = WScript.Arguments.Named("file")
 Cert = WScript.Arguments.Named("cert")

If a specific certificate store is specified, that’s passed to the Signer
objects, too.

 If WScript.Arguments.Named.Exists("store") Then
 Store = WScript.Arguments.Named("store")
 Else
 Store " "
 End If

jones.book Page 492 Wednesday, February 25, 2004 2:11 PM

Running Only Signed Scripts 493

Finally, the Signer’s SignFile method is called to actually sign the target
script file. The file is opened, and its signature is written to a comment
block.

 Signer.SignFile(File, Cert, Store)

 </script>
</job>

Note that anyone can get into the file and modify its signature. How-
ever, the signature no longer matches the script, and it cannot pass the trust
test conducted by WSH. Similarly, any changes to the script’s code, after it
is signed, fail the trust test.

Running Only Signed Scripts

If you don’t want to mess around with software restriction policies, you can
also rely on WSH’s own built-in form of security policy. This policy allows
you to specify that only signed scripts will be run; unsigned scripts won’t be.
This is probably the easiest and most effective way to prevent most unau-
thorized scripts.

To set the policy, open the registry key HKEY_CURRENT_USER\
SOFTWARE\Microsoft\Windows Script Host\Settings\TrustPolicy. Set the
value to 0 to run all scripts, 1 to prompt the user if the script is untrusted,
and 2 to only run trusted scripts. What’s a trusted script? Any script that has
been digitally signed by a certificate that the user’s computer is configured
to trust. For example, if you purchase a certificate from VeriSign (which all
Windows computers trust by default), and use that certificate to sign your
scripts, they’ll run. Unfortunately, a hacker could do the same thing—but
you could easily investigate the source of the certificate, because it’s a way to
uniquely identify the signer.

Using this built-in trust policy allows you to run only signed scripts no
matter what version of Windows your users have, provided you’ve deployed
WSH 5.6 or later to all computers. Note that this technique, because it
relies on WSH and not the operating system, works on all operating systems
capable of running WSH. Many of the other techniques in this chapter—
such as Software Restriction Policies—run only on Windows XP, Windows
Server 2003, and later.

jones.book Page 493 Wednesday, February 25, 2004 2:11 PM

494 Chapter 28 Scripting Security

Ways to Implement Safe Scripting

Although Software Restriction Policies offer a promising way to control
what runs on your users’ computers, it’s only available on XP and 2003, and
does require some pretty significant planning before you can roll it out. Are
there any alternatives to safely scripting? Absolutely.

The Filename Extension Game

One of the easiest ways is to configure your users’ computers to no longer
associate VBS, SCR, WSF, and other filename extensions with the
WScript.exe executable. Removing these file associations prevents users
from double-clicking any script files and having them automatically run. To
keep your own scripts running, simply associate a new filename extension—
such as CORPSCRIPT—with WScript.exe. Name trusted scripts appropri-
ately, and they’ll run. It’s unlikely a hacker can guess your private filename
extension, making this a simple, reasonably effective means of establishing a
safer scripting environment.

Script Signing

As I described earlier in this chapter, signing your scripts is a simple and
effective way to guarantee their identity. By globally setting the WSH trust
policy, you can prevent your computers from running untrusted scripts.
There doesn’t have to be much expense associated with this technique: You
can establish your own Certification Authority (CA) root, use Group Policy
to configure all client computers to trust that root, and then use the root to
issue yourself a code-signing certificate.

Antivirus Software

Most modern antivirus software watches for script launches and displays
some kind of warning message. I don’t consider this an effective means of
protecting your enterprise from unauthorized scripts; it’s difficult to com-
municate to your users which scripts are “good” and which are “bad,” put-
ting them into just as much trouble as before the antivirus solution stepped
in to help. However, such software can provide an easy-to-deploy means of
protecting against scripts, especially if you aren’t planning to use your own
scripts on users’ machines (as in logon scripts).

jones.book Page 494 Wednesday, February 25, 2004 2:11 PM

Review 495

Defunct Techniques

Some popular techniques have been used in the past to control scripting
that I want to discuss very briefly. I don’t consider these methods reliable,
secure, or desirable.

■ Removing WScript.exe and Cscript.exe. Under Windows 2000 and
later, these two files are under Windows File Protection and are not
easily removed to begin with. Plus, doing so completely disables
scripting, which probably isn’t a goal if you’re reading this book.

■ Disassociating the VBS, WSF, and other filename extensions. Scripts
can still be executed by running Wscript.exe scriptname, because
that doesn’t require a filename extension. In other words, it doesn’t
require much effort for hackers to e-mail shortcuts that do precisely
that, thus defeating this technique as a safety measure.

■ Renaming WScript.exe to something else. This is ineffective.
Although it prevents the existing file extensions (VBS, etc.) from
launching WScript.exe, it doesn’t necessarily prevent scripts from
running. Additionally, because WScript.exe is under Windows File
Protection on Windows 2000 and later, the file may eventually wind
up being replaced under your nose.

Review

Scripting can be made safe in almost any environment. The capability of
WSH to spot signed scripts and execute them, combined with your ability as
an administrator to customize the filename extensions on client and server
computers, can provide an effective barrier against unauthorized scripts,
still allowing your own scripts to run.

COMING UP
You’re all finished! If you’ve read this book straight through, you’ve learned
how to program in VBScript, use ADSI and WMI, create administrative Web
pages, and even secure your environment for safer scripting. In the next part,
I’ll wrap up with some longer examples of administrative scripts that you can
use as references or start running in your environment right away.

jones.book Page 495 Wednesday, February 25, 2004 2:11 PM

jones.book Page 496 Wednesday, February 25, 2004 2:11 PM

