
463

C H A P T E R 1 0

Ajax and Java Web Services

In this chapter, I examine how Java Web Services can be used to support
Ajax clients. Ajax, or Asynchronous JavaScript and XML, is a program-
ming technique that enables you to create user interfaces for a Web
browser that behave more like a local, stand-alone application than a col-
lection of HTML pages.

Ajax is a good fit with Java Web Services. Using these two technologies
together enables you to publish software components as services (via JAX-
WS) and create great browser-based user interfaces on top of them (via
Ajax). The entire application can then be packaged as an EAR or WAR and
deployed on a Java EE application server.

To demonstrate this capability, I pick up here where I left off at the
end of Chapter 9. In that chapter, I showed you how to build an online
shopping application, SOAShopper, which can search across multiple
Web-service-enabled sites (i.e., eBay, Yahoo! Shopping, and Amazon). In
this chapter, I show how you can develop an Ajax front-end to SOAShop-
per. In particular, the code examined in this chapter demonstrates how
to write an Ajax application that consumes RESTful Java Web Services
endpoints.

In the second half of this chapter, I review the JavaScript code that
implements the SOAShopper Ajax front-end in quite a bit of detail. For
those of you who are familiar with Web front-end coding and JavaScript,
this detail may seem tedious. I include it because my assumption is that
many readers of this book are server-side Java programmers who do not
usually do a lot of JavaScript development and, therefore, might be inter-
ested in the detailed code explanation.

hansen.book Page 463 Wednesday, April 11, 2007 8:06 PM

464 Ajax and Java Web Services

10.1 Quick Overview of Ajax

Ajax is a well-documented technology, and my purpose here is not to write a
detailed tutorial on Ajax programming.1 However, I do want to go over
some of the basics to set the stage for a discussion of the SOAShopper
front-end and how it interacts with Java EE.

As many of you know, the major benefit of Ajax is that it allows a
browser-based application to avoid the need for full-page refreshes each
time new data is retrieved from the server. Ajax programmers use the
JavaScript type XMLHttpRequest to exchange data with the server behind
the scenes (i.e., without having to reload the entire HTML page being
displayed by the browser). When new data (usually in XML format) is
received by an XMLHttpRequest instance, JavaScript is used to update the
DOM structure of the HTML page (e.g., inserting some rows in a table)
without rebuilding the entire HTML page in memory.

To see what that means in practice, I walk you through some screen
shots from the SOAShopper front-end. Then, in the rest of this chapter, I
will show you how to write the code behind these screen shots.

If you build and deploy the SOAShopper application on your local
machine2 and point your browser to http://<your-host>:<your-
port>/shoashopper/ajax/search.html, you should see something simi-
lar to what appears in Figure 10–1. This is the initial search screen for
SOAShopper. The three labeled items in this figure are worth pointing
out for discussion:

1. The URL where the application resides remains constant throughout
its use. The search is performed and results are displayed without
loading a new page. This is implemented by using JavaScript that
updates the DOM residing in the browser’s memory.

2. This search page offers you four search parameters: a set of key-
words; a category to search; a low price; and a high price. These
parameters correspond to the parameters supported by the
SOAShopper offerSearch REST endpoint discussed in Chapter 9,
Section 9.3 (see Figure 9–2). This search page contains JavaScript
that converts these parameters into a query string that an XMLHt-
tpRequest instance uses to invoke the offerSearch endpoint.

1. For a good introduction to Ajax, I recommend “Ajax in Action” [AIA].
2. For instructions, see Appendix B, Section B.9.

hansen.book Page 464 Wednesday, April 11, 2007 8:06 PM

10.1 Quick Overview of Ajax 465

3. At the bottom of Figure 10–1 appear some column headings (i.e.,
Source, Image, Price, Summary) for an empty table. Once a search is
performed and the XMLHttpRequest has received the results, a Java-
Script function contained in this page processes those results and
loads them into the table. This table is implemented using the Dojo
Foundation’s [DOJO] FilteredTable widget.

As you can see from Figure 10–1, a user has entered some criteria for a
search. The keywords value is “razr.” The search category is CELL-
PHONES and the price range is $50.00–100.00. Figure 10–2 shows what
happens to the screen when the user clicks on the Search button. The
search takes a while to run (sometimes as long as a minute). This is not
because the Java EE 5 application server is slow or because the JavaScript
in the Web page is slow. Rather, it is because the shopping sites being
searched (particularly eBay) can take quite a while to respond. To handle
this, Ajax techniques are used to update the interface and let the user know
the application is not broken.

There are two items labeled in Figure 10–2 that I want to point out:

Figure 10–1 The initial SOAShopper search screen.

1

3

2

hansen.book Page 465 Wednesday, April 11, 2007 8:06 PM

466 Ajax and Java Web Services

1. First, notice that an icon and some text have appeared below the
Search button. The icon is actually an animated GIF that indicates the
application is working to retrieve data from the server. The text shows
us the URL of the REST endpoint from which the data has been
requested: /soashopper/rest/shopper?keywords=razr&category
=CELLPHONES¤cyId=USD&lowprice=50.00&highprice=100.00.
This is the URL and query string structure that are used in Chapter 9,
Section 9.3, for the SOAShopper REST endpoint. This icon and mes-
sage appear while the XMLHttpRequest request is happening asynchro-
nously. The search.html page has not been reloaded either. Rather,
the DOM representation of search.html that was loaded by the Web
browser (Firefox in this case) has been changed by a JavaScript func-
tion that inserted the animated GIF and text into the appropriate place.

2. The search results table is still empty because the asynchronous
request for data from the SOAShopper REST endpoint has not yet
completed.

Figure 10–2 Screen shot showing asynchronous processing in progress.

1

2

hansen.book Page 466 Wednesday, April 11, 2007 8:06 PM

10.1 Quick Overview of Ajax 467

Figure 10–3 shows the appearance of the SOAShopper search page
after the search results have been returned from the server. At this point,
the XmlHttpRequest object has received the search data from the REST
endpoint and invoked a JavaScript function to load that data into the results
table. Two other items, labeled in the figure, are worth pointing out:

1. The animated GIF has disappeared and the text below the Search
button has changed to indicate that the results have been received.

Figure 10–3 Screen shot showing search results displayed in the Dojo table widget.

1

2

hansen.book Page 467 Wednesday, April 11, 2007 8:06 PM

468 Ajax and Java Web Services

2. The search results table has been populated. As you can see, these
results included a list of cell phones. The leftmost column, “Source,”
indicates which site the offer came from (Figure 10–3 shows results
from eBay and Yahoo! Shopping). A thumbnail image, if available, is
displayed, along with the price and summary. The rightmost column
contains a link to the page containing the offer. Clicking this link will
take you to a page where you can purchase the cell phone that is listed.

One cool feature of the Dojo table widget used here is that the results
can be sorted by column. Figure 10–3 shows the results sorted by price
from high to low. Hence, the $99.99 phone appears at the top of the list.

That wraps up a quick overview of the SOAShopper search interface. In
the next section, I look at the working relationship between Ajax and Java
EE that has been demonstrated in these screen shots.

10.2 Ajax Together with Java EE Web Services

Figure 10–4 shows the interrelationship between the Ajax front-end illus-
trated by screen shots in Section 10.1, and the SOAShopper application
described in Chapter 9. The numbered items in this figure trace the flow of
events that implement the search:

1. First, there is a JavaScript function, retrieveURL (url), contained
in the HTML page (search.html), that has been loaded by the
browser. When the Search button is pressed, this function is invoked
with the parameter url set to the value of the REST endpoint with
the query string determined by the search parameters.

2. Next, the showSearchingMsg() function is invoked to display the
animated GIF and message illustrated in Figure 10–2.

3. Then, the retrieveURL() function instantiates an XMLHttpRequest
object, which invokes the SOAShopper’s REST endpoint asynchro-
nously. It also configures a handler (the processStateChange()
function used in step 7) on the XMLHttpRequest object.

4. The XMLHttpRequest object makes an HTTP GET request to the
SOAShopper REST endpoint. This is an asynchronous request, and
the main thread of execution returns to handle any other interactions
that may occur while the search is going on.

5. Meanwhile, inside the Java EE container that has deployed the
SOAShopper REST endpoint, processing of the XMLHttpRequest’s

hansen.book Page 468 Wednesday, April 11, 2007 8:06 PM

10.2 Ajax Together with Java EE Web Services 469

HTTP GET request is taking place. As described in Chapter 9, Sec-
tion 9.3, query parameters are parsed from the query string and
passed to the

6. SOAShopper internals. SOAShopper then translates the search
request into the appropriate form for each online shopping service
(eBay, Amazon, and Yahoo! Shopping), gets the results, and packages
them into an XML document compliant with the retail.xsd schema

Figure 10–4 A typical Ajax client invokes REST endpoints asynchronously.

Java EE 5 Container

REST Services

@WebServiceProvider

Provider<Source>

SOAShopper Standard
XML Schema

eBay API
(SOAP)

SOAShopper
Internals Amazon API

(SOAP)

Yahoo! API
(REST)

XML/
HTTP

eBay Web
Services

Amazon Web
Services

Yahoo! Shopping
Web Services

Internet

Web Browser

retrieveURL(url)
(JavaScript Function)

XMLHttpRequest

setData()
(Dojo FilteredTable
Function)

1

3

6

4

5

7 9

showSearchingMsg()
(JavaScript Function)

2

processStateChange()
(JavaScript Function)

8

Internet

hansen.book Page 469 Wednesday, April 11, 2007 8:06 PM

470 Ajax and Java Web Services

(see Chapter 9, Example 9–4, from Section 9.2). The XML document
is then sent back to the XMLHttpRequest object over the HTTP
response to its original GET request.

7. When the XMLHttpRequest’s state changes, indicating that the search
response has been received, the processStateChange() handler (set
in step 2) gets invoked.

8. The processStateChange() handler calls other functions that (i)
change the message to indicate the search has finished, and (ii) pro-
cess and format the XML data received from SOAShopper so that it
can be displayed.

9. Lastly, the Dojo table widget’s setData() function is invoked to dis-
play the search results.

One other relationship between the Ajax application running in the
Web browser and the Java EE container is not shown in Figure 10–4. The
Web container on the Java EE side also acts as a Web server hosting the
Ajax application. So, the search.html page that contains the Ajax code is
served by the Java EE container as well.

In the next section, I walk through the JavaScript code that imple-
ments steps 1–9. My goal is to give you a detailed understanding of how to
implement an Ajax application that can interact with your Java EE REST
endpoints.

10.3 Sample Code: An Ajax Front-End for SOAShopper

The code example discussion starts with the JavaScript function
retrieveURL(), shown as step 1 in Figure 10–4. As you can see in Example
10–1, the first thing this code does is invoke the showSearchingMsg() func-
tion to display the message on the browser indicating that the search is
underway.

Example 10–1 The retrieveURL() JavaScript Function Uses an XMLHttpRe-
quest Object to Asynchronously Invoke the SOAShopper REST Endpoint

 125 function retrieveURL(url) {
 126 restURL = url;
 127 showSearchingMsg(restURL);
 128 if (window.XMLHttpRequest) { // Non-IE browsers
 129 req = new XMLHttpRequest();

hansen.book Page 470 Wednesday, April 11, 2007 8:06 PM

10.3 Sample Code: An Ajax Front-End for SOAShopper 471

 130 req.onreadystatechange = processStateChange;
 131 try {
 132 req.open("GET", url, true);
 133 req.setRequestHeader('Content-type','text/xml');
 134 } catch (e) {
 135 alert(e);
 136 }
 137 req.send(null);
 138 } else if (window.ActiveXObject) { // IE
 139 req = new ActiveXObject("Microsoft.XMLHTTP");
 140 if (req) {
 141 req.onreadystatechange = processStateChange;
 142 try {
 143 req.open("GET", url, true);
 144 req.setRequestHeader('Content-type','text/xml');
 145 } catch (e) {
 146 alert(e);
 147 }
 148 req.send();
 149 }
 150 }
 151 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp
/search.html

Next, the code instantiates the XMLHttpRequest object and stores it in
the req variable. Actually, the code needs to handle two cases for Microsoft
and non-Microsoft browsers. In a non-Microsoft browser, it is created using:

new XMLHttpRequest()

However, in Internet Explorer, it is creating using:

new ActiveXObject("Microsoft.XMLHTTP")

Once the XMLHttpRequest object is instantiated, an HTTP GET
request is made to the specified url parameter using req.open() and
req.send() functions. The setRequestHeader() call is made to add the:

Content-type: text/xml

hansen.book Page 471 Wednesday, April 11, 2007 8:06 PM

472 Ajax and Java Web Services

HTTP request header to the GET request. Strictly speaking, this should not
be necessary. However, some REST endpoints require that the Content-
type header be configured this way. For example, early versions of JAX-WS
(including the first production release of GlassFish), required it.

Example 10–2 shows the code that implements step 2 from Figure 10–4.
This code manipulates the Web browser’s DOM representation of the
search.html document.

Example 10–2 The JavaScript Method showSearchingMsg() Updates the Web Browser’s
DOM to Display an Animated GIF and Text Message

 81 function showSearchingMsg(url) {
 82 var messageTDElt = document.getElementById('searchingMessageId');
 83 var loadingTDElt = document.getElementById('loadingId');
 84 loadingTDElt.setAttribute('width','50');
 85 var loadingNode = document.createElement('img');
 86 loadingNode.setAttribute('src','images/bigrotation2.gif');
 87 loadingNode.setAttribute('style', 'margin-right: 6px; margin-top: 5px;');
 88 var existingLoadingNode = loadingTDElt.firstChild;
 89 if (existingLoadingNode) {
 90 loadingTDElt.removeChild(existingLoadingNode);
 91 }
 92 loadingTDElt.appendChild(loadingNode);
 93 var msg = "Invoking RESTful search at URL: " + url;
 94 var msgNode = document.createTextNode(msg);
 95 var existingMsg = messageTDElt.firstChild
 96 if (existingMsg) {
 97 messageTDElt.removeChild(existingMsg);
 98 }
 99 messageTDElt.appendChild(msgNode);
 100 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

First, this code gets a reference to a DOM element (stored in message-
TDElt) where the text message should be displayed. The ID, 'searching-
MessageId', refers to a cell in a table, halfway down the page. That cell is
empty when the search.html page is loaded. However, the code here—in
particular, the last line:

messageTDElt.appendChild(msgNode)

hansen.book Page 472 Wednesday, April 11, 2007 8:06 PM

10.3 Sample Code: An Ajax Front-End for SOAShopper 473

places the text “Invoking RESTful search at URL: ...” in that cell. Similarly,
other parts of this code place an animated GIF reference (i.e., images/
bigrotation2.gif) into another cell with the ID 'loadingID'.

If you have done server-side Java DOM programming,3 this type of
HTML DOM programming in JavaScript should make sense. If you haven’t
seen any kind of DOM programming before, you might want to look at
“Ajax in Action” [AIA] Chapter 2 for an introduction to manipulating
HTML DOM.

Getting back to the HTTP GET request issued by the XMLHttpRequest
object, this request is received by the Java EE container where SOAShopper
is deployed—in particular, the request handled by the JAX-WS runtime
where it ends up calling the ShopperServiceRESTImp.invoke() method,4

which has been deployed at the endpoint invoked by the Ajax application. In
Figure 10–4, this part of the process is labeled step 5. This Web service
method, ShopperServiceRESTImp.invoke(), in turn invokes the SOAShop-
per API shown in Example 10–3.

Example 10–3 The Java Method offerSearch Is Bound to the REST Endpoint by JAX-WS
(The Query String Parameters from the Browser’s XMLHttpRequest Request End Up Get-
ting Mapped to the Parameters of This Method)5

 22 public interface ShopperServiceREST {
 23
 24 public OfferList offerSearch(String keywords, String category,
 25 String currencyId, Double lowprice, Double highprice);
 26
 27 }

book-code/chap09/soashopper/soashopper-services-rest/src/main/java/com/javector
/soashopper/endpoint/rest/ShopperServiceREST.java

At this point, the server-side SOAShopper application does the search
of eBay, Yahoo! Shopping, and Amazon. This is step 6 in Figure 10–4. The
internals of SOAShopper are described in detail in Chapter 9.

3. See, for example, the programming for WSDL processing and XML validation discussed
in Chapter 7, Section 7.5—particularly Example 7–10.
4. See Chapter 9, Section 9.3, Example 9–11.
5. See Chapter 9, Section 9.3.

hansen.book Page 473 Wednesday, April 11, 2007 8:06 PM

474 Ajax and Java Web Services

Of interest here, from the Ajax perspective, is what happens when the
server-side SOAShopper application returns. As indicated by step 7 in Fig-
ure 10–4, a handler function—processStateChange()—is invoked.

Example 10–4 The JavaScript Function processStateChange() Is Invoked When the
Asynchronous XMLHttpRequest.send() Function Returns (If the REST Query Returns
“200 OK”, the processXML() Function Is Invoked to Display the Search Results)

 156 function processStateChange() {
 157 if (req.readyState == 4) { // Complete
 158 showFinishedMsg(restURL);
 159 if (req.status == 200) { // OK response
 160 processXML(req.responseXML);
 161 } else {
 162 alert("Problem invoking REST endpoint: " + restURL + " : "
 163 + req.status + " " + req.statusText);
 164 }
 165 }
 166 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp
/search.html

Example 10–4 shows the code for that handler function. It simply
checks that an HTTP response code 200 was received (indicating success)
and then invokes the processXML() function. For code clarity, it makes
sense to keep such a handler function as simple as possible and organize the
real work in another function. If the HTTP response is not 200 (indicating a
problem), the code here simply sends an alert message. In a real production
application, some diagnostics would take place together with an attempt to
recover from the failure and maybe reissue the HTTP request.

Supposing that the HTTP response code is 200, the next step in this
process is to parse the XML document returned by the SOAShopper ser-
vice. As indicated by Example 10–3, the return type of the SOAShopper
API is OfferList. OfferList is a JAXB schema-generated Java class com-
piled from the retail:offerList schema element in the retail.xsd
schema shown in Example 10–5. This is the schema referenced in the
REST endpoint documentation from Chapter 9.6

6. See Chapter 9, Section 9.3, Figure 9-2.

hansen.book Page 474 Wednesday, April 11, 2007 8:06 PM

10.3 Sample Code: An Ajax Front-End for SOAShopper 475

Example 10–5 The XML Schema Definition for the XML Document Received by the Ajax
Application from the SOAShopper REST Endpoint

 7 <xs:element name="offerList">
 8 <xs:complexType>
 9 <xs:sequence>
 10 <xs:element ref="tns:offer" minOccurs="0" maxOccurs="unbounded"/>
 11 </xs:sequence>
 12 </xs:complexType>
 13 </xs:element>
 14
 15 <xs:element name="offer" type="tns:OfferType"/>
 16
 17 <xs:complexType name="OfferType">
 18 <xs:sequence>
 19 <xs:element name="offerId" type="xs:string" nillable="true"/>
 20 <xs:element name="productId" type="xs:string" minOccurs="0"/>
 21 <xs:element name="source" type="tns:SourceType"/>
 22 <xs:element name="thumbnail" type="tns:PictureType" minOccurs="0"/>
 23 <xs:element name="price" type="tns:PriceType"/>
 24 <xs:element name="merchantName" type="xs:string" minOccurs="0"/>
 25 <xs:element name="summary" type="xs:string"/>
 26 <xs:element name="offerUrl" type="xs:anyURI"/>
 27 </xs:sequence>
 28 </xs:complexType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

This schema was used as a guide for writing the processXML() function
appearing in Example 10–6. In this function, the response XML document
from SOAShopper is passed in as the parameter searchDoc. As indicated by
the schema, each individual offer7 returned is contained in an <offer> ele-
ment. Hence, the line:

var listOffers = searchDoc.getElementsByTagName('offer');

7. An “offer” is a product offered for sale on one of eBay, Yahoo! Shopping, or Amazon.

hansen.book Page 475 Wednesday, April 11, 2007 8:06 PM

476 Ajax and Java Web Services

returns an array8 of <offer> elements. The processXML() function then
proceeds to iterate through that array, using the DOM API to extract the
following information:

■ source—the source of the offer (i.e., eBay, Yahoo!, or Amazon)
■ thumbnailHtml—a fragment of HTML referencing a thumbnail image

of the product offered (e.g., <img src="http:// ..." width=".."
height=".."/>)

■ priceStr—the price of the offer (e.g., USD 19.95)
■ summary—a string containing a description of the offer
■ urlHtml—a fragment of HTML referencing the page where the

offer can be purchased (e.g., link)

Example 10–6 does not show the code used to extract each variable, but
it contains enough to give you an idea of how the DOM API is used to pro-
cess the returned XML.

Example 10–6 The Function processXML() Walks the DOM of the XML Returned by the
REST Endpoint to Extract the Data That Gets Displayed

 173 function processXML(searchDoc) {
 174 try {
 175 var listOffers = searchDoc.getElementsByTagName('offer');
 176 for (var i=0; i<listOffers.length; i++) {
 177 var item = listOffers.item(i);
 178 var sourceStr =
 179 item.getElementsByTagName('source').item(0).firstChild.data;
 180 var thumbnailElts = item.getElementsByTagName('thumbnail');
 181 var thumbnailElt;
 182 var thumbnailUrl = "";
 183 var thumbnailHtml = "";
 184 if (thumbnailElts && thumbnailElts.item(0)) {
 185 thumbnailElt = thumbnailElts.item(0);
 186 thumbnailUrl =
 187 thumbnailElt.getElementsByTagName('url').item(0).firstChild.data;
 188 thumbnailHtml = "<img src='"+thumbnailUrl+"'";
 189 var h = thumbnailElt.getElementsByTagName('pixelHeight');
 190 if (h && h.item(0)) {
 191 thumbnailHtml += " height='"+h.item(0).firstChild.data+"'";
 192 }

8. Technically a NodeList.

hansen.book Page 476 Wednesday, April 11, 2007 8:06 PM

10.3 Sample Code: An Ajax Front-End for SOAShopper 477

 193 var w = thumbnailElt.getElementsByTagName('pixelWidth');
 194 if (w && w.item(0)) {
 195 thumbnailHtml += " width='"+w.item(0).firstChild.data+"'";
 196 }
 197 thumbnailHtml += "/>";
 198 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Next, the values that have been extracted need to be put into a format
that can be loaded into the Dojo table widget. The widget accepts data in
JSON format,9 so the processXML() function creates a new variable, json-
Data, to hold the data in that form. Each offer, in JSON format, is loaded
into a global array named theSOAShopperLiveData (see Example 10–7).

Example 10–7 Search Results Data Is Converted to JSON Format for Display by the Dojo
Table Widget

 215 var jsonData = {
 216 Id:i,
 217 source:sourceStr,
 218 thumbnail:thumbnailHtml,
 219 price:priceStr,
 220 summary:summaryStr,
 221 url:urlHtml
 222 };
 223 theSOAShopperLiveData.push(jsonData);
 224 } // end for
 225 populateTableFromLiveSOAShopperData();

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Finally, when all the offer data has been converted to JSON and loaded
into the array, the function populateTableFromLiveSOAShopperData() is
called to load the Dojo table widget.

9. JSON is a text-based data interchange format used as a serialization alternative to XML. It
is commonly used in Ajax programming because it works well with JavaScript. See the Glos-
sary. See also www.json.org.

hansen.book Page 477 Wednesday, April 11, 2007 8:06 PM

478 Ajax and Java Web Services

Example 10–8 shows the code that loads the table.

Example 10–8 The JSON Data Is Loaded into the Dojo Table Widget

 234 function populateTableFromLiveSOAShopperData() {
 235 try {
 236 var w = dojo.widget.byId("fromSOAShopperData");
 237 if(w.store.get().length > 0){
 238 alert("you already loaded SOAShopper data :)");
 239 return;
 240 }
 241 w.store.setData(theSOAShopperLiveData);
 242 } catch(e) {
 243 alert(e);
 244 }
 245 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Note that the first step is to invoke a Dojo function (dojo.widget.byId)
to get a reference to the Dojo table widget. The Dojo functions are loaded
using script elements such as:

<script type="text/javascript" src="scripts/dojo.js"></script>

in the HTML <head> element. Once we have a reference to the table wid-
get, it is loaded with the JSON data by calling the store.setData()
method. Note that w.store is the data store associated with the table wid-
get referenced by w.

Example 10–9 The Dojo FilteringTable Widget Is Used to Display the Search Results

 300 <table dojoType="filteringTable" id="fromSOAShopperData" multiple="true"
 301 alternateRows="true" cellpadding="0" cellspacing="0" border="0"
 302 style="margin-bottom:24px;">
 303 <thead>
 304 <tr>
 305 <th field="source" dataType="String">Source</th>
 306 <th field="thumbnail" dataType="html" align="center">Image</th>
 307 <th field="price" dataType="String">Price</th>

hansen.book Page 478 Wednesday, April 11, 2007 8:06 PM

10.4 Conclusions about Ajax and Java EE 479

 308 <th field="summary" dataType="String">Summary</th>
 309 <th field="url" dataType="html">Link</th>
 310 </tr>
 311 </thead>
 312 </table>

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Wrapping up this tour of the SOAShopper JavaScript, Example 10–9
shows the HTML for the Dojo table widget. Notice that it contains the
attribute dojoType that identifies it as a FilteringTable. The <th> header
cells in this table contain field attributes that map each column to the corre-
sponding JSON field name (see Example 10–7).

10.4 Conclusions about Ajax and Java EE

In this chapter, I presented a brief overview of Ajax programming by focus-
ing on how to create a front-end for the SOAShopper application con-
structed in Chapter 9. I hope you have enjoyed this little detour from Java
programming and found it helpful for understanding one type of consumer
of Java EE Web services. Some of the more important takeaways from this
chapter are as follows:

■ Ajax and Java EE support a nice separation of concerns, where
server-side Java EE handles the hard-code SOA integration and
deployment of Web service endpoints, and Ajax provides an attrac-
tive and user-friendly front-end.

■ The entire application, Ajax front-end, and Java EE back-end can be
bundled as a single EAR for painless deployment to any Java EE
application server.

■ Creating Ajax applications requires a mastery of JavaScript and
HTML DOM that may not be familiar to most server-side Java EE
programmers. However, as I illustrated in the SOAShopper search
example presented here, it is not too difficult to pick up those skills.

■ When creating and deploying Java EE service endpoints, it is prob-
ably good practice, at least for the more complex services, to create
a simple Ajax front-end to go along with the service. An Ajax front-
end makes it easy for the consumers of a service you have written

hansen.book Page 479 Wednesday, April 11, 2007 8:06 PM

480 Ajax and Java Web Services

to visually experience the data your service returns. The ability to
“play” with a Web service in such a manner can give a developer a
much better intuitive sense for the service interface than a WSDL
or XML schema.

In the next and final chapter, I look at an alternative to the Java Web
Services framework that is WSDL-centric, rather than Java-centric. This
SOA-J framework, first mentioned at the end of Chapter 1, leverages JWS,
but provides an alternative paradigm for Web services development and
deployment.

hansen.book Page 480 Wednesday, April 11, 2007 8:06 PM

