Practical Ajax Projects
with Java™ Technology

Frank W. Zammetti

Apress*

Practical Ajax Projects with Java™ Technology
Copyright © 2006 by Frank W. Zammetti

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 987-1-59059-695-1
ISBN-10 (pbk): 1-59059-695-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

Apress, Inc. is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Chris Mills

Technical Reviewer: Herman van Rosmalen

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole LeClerc

Copy Editor: Liz Welch

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Gunther

Compositor: Lynn L'Heureux

Proofreader: Linda Seifert

Indexer: Brenda Miller

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

CHAPTER 10

AJAX Warrior: Back to the Future
in a Fun Way!

Well, the road has been long! We've explored six other applications together, learned a great
deal about using Ajax in various ways, and produced some really useful stuff from it all. Now
we stand on the verge of a great journey. You are about to embark on a quest of understanding,
and of entertainment. We will control the vertical. We will control the horizontal. We will ven-
ture forth into a land of strange creatures, magic, powerful enemies, and heroic deeds. As your
guide, I'll take you into our final Ajax project, and what a dandy it is: a game! In this chapter
you'll see more ways of using “naked” Ajax. You'll learn about something called JSON, a data
interchange format that is all the rage in these Web 2.0 days, and you'll see a good amount of
CSS and DOM scripting techniques. You'll be introduced to even more JavaScript tricks and
even produce another kind of server-side application framework. At the end of it all, you get to
slack off a bit and play a game that I hope you'll find entertaining as well as educational. Let
the adventure begin!

Requirements and Goals

AJAX Warrior tells the story of the mythical land of Xandor. The evil Lord Mallizant has stolen
the five sacred artifacts of Xandor: the Crystal Skull, the Scroll of Life, the Medallion of the Sun,
the Staff of Tiuwahha, and the Ankh. He has banished the good king Chimley from his home in
Castle Faldon and hidden the artifacts throughout the lands, protected in stone and guarded
by evil magic. However, before Chimley was banished, he managed to steal the five keys
needed to open the magical doors, and he has scattered three of them throughout the com-
munities of Xandor and given two of them to custodians.

Your job, as the AJAX Warrior, is to first retrieve the five keys, and then retrieve the five
artifacts. Once all five artifacts are in your possession, they will be reunited, and Mallizant will
instantly die (he is now tied to their fate, much like Sauron in Lord of the Rings). Along the way
you'll have to do battle with Mallizant’s minions, a variety of beasts with varying degrees of
fighting abilities. You'll need to speak to the inhabitants of Xandor because remember, two of
them will have keys you need, and some will give you clues on where to find the other keys
and even the artifacts themselves. Oh, and be sure not to kill one of the key masters; needless
to say, your quest will be unceremoniously cut short if you do that!

OK, back here in the real world...

What exactly are we going to accomplish with this game? What are some of the specifics
we're going to implement? Let’s now enumerate at least a few of them: 407

408 CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

* We'll have maps that are 100X100 tiles in size, where each tile is 32X32 pixels in size.
This should give us a decent-sized world to inhabit.

e There will be four communities in Xandor: Castle Faldon, an unnamed village, and two
towns named Rallador and Triyut. Each of them is also represented by a 100X100 map.

» The player will be able to cast a number of different spells, including a healing spell, a
Fire Rain spell (for combat), and a Freeze Time spell (to stop the passage of time for
every being but the player).

* The player will be able to possess a number of weapons, including a dagger, staff, and
mace.

* We should be able to save a game in progress, and continue that game at will. Of course,
that save should be done on the server.

* We'll be able to talk to some characters in the game. Some characters will be belligerent,
though, and will not talk to us, but will instead attack us all the time.

e When talking to a character, we’ll use a script system that allows for some variability
depending on what the player says. As we reply to the character, their “karma” will
increase or decrease depending on our responses. If their karma reaches zero, they will
run away. If we're talking to a key master, we have to get their karma to 15, at which
point they’ll give us the key. So, it is important for the player to talk “properly” to each
character.

* The player will be able to view their inventory of spells and weapons, will be able to call
up help at any time, and will be able to cast spells at any time. They’ll also be able to
toggle between Attack mode, which means they’ll attack any character they encounter,
and Talk mode, which means they’ll enter into conversation with any nonbelligerent
character they encounter (provided they speak the language of the character!).

 Lastly, we want to have the vast majority of the true game logic on the server, not the
client. The client should, for the most part, just be responsible for showing outcomes.
We'll also do all our Ajax functions “nakedly,” that is, without using any Ajax library, and
we'll also use a new communication technique: JSON.

Whew, that sure is a lot of work! And just to remind you, these are only some of the goals.
We'll discover other things that I've implemented as we dissect the solution, but these are
probably the most important goals.

So, without further ado, here we go!

How We Will Pull It Off

In creating AJAX Warrior, I decided to go with “naked” Ajax, which means not using any library or
toolkit at all. Developing games is usually a complex endeavor. I have written a number of games
over the years, and I can say that they tend to be more complex than any of the enterprise-class
development I do for a living. Because of this, I wanted to have the maximum degree of control
over how things happened, and the best way to do that in my estimation is not to rely on any
library.

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

Multipurpose Functions and Centralized Ajax

In exploring this application, you'll see a new technique to use when coding your own Ajax.
This technique is a way to have a JavaScript function serve a dual purpose: to fire off an Ajax
request, and to be its own callback. Let’s jump directly into some code to see how this might
work (Listing 10-1).

Listing 10-1. An Example Ajax Function

/**

* Picks up an item the player is currently on.
*/

function pickUpItem() {

if (xhr.request == null) {
sendAJAX(pickUpItem, "pickUpItem.command", "", null);
} else {

if (xhr.json.iu == "true") {
updatePlayerInfo(xhr.json.pn, xhr.json.ht, xhr.json.hp, xhr.json.gp);
}
// Always display the message.
updateActivityScroll(xhr.json.mg);
return true;

} // End xhr.request == null if.

} // End pickUpItem().

Listing 10.1 shows one of the functions from the game code; specifically, the function is
called when the player wants to pick up an item such as gold, spell scrolls, or health packs.
We'll hold off on getting into the details of what is actually happening until later, but you need
to recognize that here some branching is being done.

When the player wants to pick up an item, this function is called. It first checks to see if
there is currently an Ajax request being processed by seeing whether or not xhr.request is
null (again, do not get hung up on the details!). This would only be null if no Ajax request is
currently in progress. In that case, it continues on and calls the sendAJAX() function, whose
purpose I'm willing to bet you can guess! Note the first parameter passed to this function: it is
a reference to the pickUpItem() function! This will be recorded as the desired callback function
for the Ajax request.

Note that I said it will be recorded—it will not actually be registered with the XMLHttpRequest
object associated with the request, as you might expect. Instead, sendAJAX() itself is the callback.
To understand this, let’s look at sendAJAX(), shown in Listing 10-2. However, I'm only going to
show a trimmed version as the actual function is rather long and gets into details that we'll
examine later. Listing 10.2 will give you the basic outline of its operation.

409

410 CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

Listing 10-2. The sendAJAX() Function (Trimmed Down)

function sendAJAX(inCallback, inURL, inQueryString, inPostData) {
if (xhr.request == null) {

// Instantiate new XMLHttpRequest object.
if (window.XMLHttpRequest) {
xhr.request = new XMLHttpRequest();
} else if (window.ActiveXObject) {
xhr.request = new ActiveXObject("Microsoft.XMLHTTP");

}

// Make AJAX call.
xhr.callback = inCallback;
xhr.request.onreadystatechange = sendAJAX;

// POST if inPostData is not null, GET otherwise.
if (inPostData == null) {

xhr.request.open("get", inURL + inQueryString, true);
} else {

xhr.request.open("post”, inURL + inQueryString, true);

}

xhr.request.send(inPostData);
} else {

if (xhr.request.readyState == 4 &3 xhr.request.status == 200) {
// Now call the callback function we recorded when initiating the
// request.
var clearVars = xhr.callback();
// Finally, clear our variables associated with AJAX requests, if the
// callback instructed us to (it wouldn't if it made another AJAX call).

if (clearVars) {
xhr.clearXHRVars();

}

} // End result status check.
} // End XMLHttpRequest null check.

} // End sendAJAX().

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 41

So, let’s follow the bouncing ball:

1. The player wants to pick up an item, so they press the Pick Up Item key, which calls
pickUpItem().

2. Assuming no other Ajax request is currently in progress, sendAJAX() is called.

3. sendAJAX() records the callback that pickUpItems() sent it, which is actually
pickUpItems(), but it registers itselfas the callback with the new XMLHttpRequest
instance.

4. The request returns to sendAJAX(), and when a good response is received, that is,
readyState == 4 and status == 200, it calls the “real” callback, pickUpItems().

5. pickUpItems() does its thing, and returns true.

6. Execution winds up back in sendAJAX(), where, seeing the result of calling the “real”
callback was true, it nulls the variable holding the reference to the XMLHttpRequest
object (xhr.request).

You may be asking yourself, “Isn’t that a bit more complicated than it needs to be?” I do
not believe so. There are two main benefits to this technique.

First, all of the actual Ajax code is centralized in sendAJAX(); it does not need to be dupli-
cated anywhere else. Not only is this good in terms of code structure, it is also efficient because
certain common things can be dealt with here instead of everywhere else—for instance, react-
ing to when the player dies. Instead of having to worry about all the various situations in which
this could occur, we instead check for it in sendAJAX(). Since it can only occur as a result of
some request to the server, it will be handled globally.

Second, this effectively eliminates concurrent Ajax requests, which could very well be a
bad thing! Since all Ajax calls go through one function, and since this one function will only
fire if another request is not already in progress, that problem is eliminated.

If both pickUpItem() and sendAJAX() checking to see if xhr.request is null seems redun-
dant to you, just remember that both are Ajax callback functions. What would happen if we
removed the check from pickUpItems()? We would not be able to differentiate between when
we need to make the Ajax request—that is, when xhr.request is null—or when we need to
handle the response—that is, when xhr.request is not null. What about if we remove it from
sendAJAX()? In that case, we could again not determine if we can make an Ajax request, or
whether we are being called as a result of a response returning from the server. It is not really
about serializing Ajax requests, as you might initially expect, but that is a side effect, and fortu-
nately, one we need anyway!

I hope you agree that this is a fairly elegant way to write Ajax code. I do not know if there is
an actual name for this approach, but if not, feel free to refer to it as the Zammetti Approach!

JSON

At this point in this book, we've seen a number of ways to return data from the server from an
Ajax request. We've seen XML. We've seen delimited strings. We've seen JavaScript being
returned. We've even seen objects being returned (well, not really, but effectively that is what it
looks like with DWR). For this project, we'll become familiar with another way to return data
that is quickly becoming a big favorite of web developers: JSON.

412

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

JSON stands for JavaScript Object Notation. I feel this is a bit of a misnomer because
while it can represent an object, it often does not. But that is just a name thing; the basic idea
is that it is a way to structure data that is returned to a caller.

JSON is billed as being a lightweight, system-independent data interchange format that is
easy for humans to read, easy for computers to parse, and easy for computers to generate. It
uses a syntax that will be immediately familiar to most programmers who have any experience
with a C-family language (including Java and JavaScript). It is built on two basic concepts that
are pretty much universal in programming: a collection of name/value pairs, such as Maps,
keyed lists, associative arrays, and so forth, and an order list of values, such as Lists or arrays.

Well, enough CompSci gobbly-gook! Let’s see what JSON looks like:

non

{"firstName":"Frank","lastName":"Zammetti","age":"33"}

Really? Is that all there is to it? I wish I could try to impress you with my advanced knowledge,
but no, that actually is all there is to it! As you can see, it looks similar to an array in Java, but
not quite because two elements are defined between each delimiter. The item to the left of the
colon is the key and the value to the right is the value. Each pair is separated by a comma, and
the whole thing is wrapped in curly braces. Simple!

Where it gets really pretty cool is when you want to handle a JSON response in JavaScript.
All you have to do is this:

eval("json = (" + xhr.responseText + ")");

The result, assuming xhr was the XMLHttpRequest that handled the response, is that a new
variable, json, will be available to your script. From then on, if you want to get the first name
in the response, you simply do this:

alert(json.firstName);

Really, that's it! The eval() call created the json variable, giving it the value of the response.
The json variable is an associative array in JavaScript, so you can access the members just as
you would any other associative array. Neat, huh?

You can send JSON to the server as well (although this project doesn’t do that). If you go to
www. json.org/java/index.html, you'll find some Java classes that help you generate and parse
JSON. In this project, the only concern is generating JSON, and because again I wanted to
have maximum control over the process, I wrote the code to do it myself. Of course, we're only
talking about generating a string here; it certainly is not rocket science, as you'll see when we
get to that code later.

I should mention that JSON is a general-purpose messaging format, and as such you can use
it quite effectively outside Ajax work. Many people have taken to it much more than XML because
it is less verbose but tends to be similarly human-readable. I'm sure we've all seen “bad” XML that
is difficult to comprehend. Likewise, you can make JSON difficult to understand if you try.

Interestingly, to a certain extent, this project does just that that! For example, here’s a real
JSON response in AJAX Warrior:

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 413

{lldmll : ll_FalseII’ llpnll : "A]_’ago]_’n The weak"’ llhtll : "100", llhpll : II1II’ llgpll : "10", Iliull : "true",
Ilvull : "true", Ildill : lI_‘:alsell’ llwnll : ll_FalseII’ llecll : Il_Falsell’ Ilmoll : "O", Ilesll : lI_‘:alsell’ llmdll : llg
ggggggssss|[geeeeggesgegeeegeegg ([[[[[[[[[[geeeeees(ggeseseetesl [[geggesesesl [[[
[(gegeeg [[LIILIILIILIILIII[e eegaesl [[[egeegesss(geggssessgsfegsgssgasgasfagss

ggggeees” }

That does not look terribly readable to me! The names of the elements are obviously not
meant for human consumption. Although you can probably guess quite a few of them, some
you may not. The reason this is the case is that for a game, you want things to happen as
quickly as possible in general. Therefore, I chose to make the JSON messages essentially
unreadable to a human, who would likely never have to read them except perhaps for debug-
ging purposes. So I made them as small and efficient as possible so as to (a) not take too long
to generate or parse and (b) not take too long to transmit across the wire.

Most applications tend not to be quite as time-sensitive as a game, though, so I suggest
always making your JSON (or XML for that matter!) as human-readable as possible. Saying
displayMessage instead of dm and playerName instead of pn, for example, is what I recommend
in such a case.

To learn more about JSON, check out the official JSON website, www. json.org. You'll find
some reference materials and even code to help you work with JSON in a variety of languages,
so if nothing else that might be worth it to you.

At this point, you are ready to use JSON, believe it or not! Go forth and be fruitful with
your new knowledge!

With that out of the way, let’s get into AJAX Warrior!

Visualizing the Finish Line

I suggest you spend some time playing AJAX Warrior before going forward. I hope you find it
fun! It certainly is not something that would likely take more than an hour to finish, or even
that long. There are a great many images I could show here, but because we have a lot of code
to examine, I'm only going to show a handful of screens that are representative of the game.
You'll see two pretty cool screens if you die or win the game, and they are not shown here. That
should give you some incentive to play for a while!

The first screen I want to show you is the title screen, shown in Figure 10-1.

We have a nice little title banner up at the top, and an area for scrolling text. The player
can switch this area between the story of the game, instructions, and some important notes
(and they are important, so if you have not done so already, read them!). After that we have an
entry box for the user to enter their name, as well as two buttons: one to start a new game, and
one to continue an existing game.

Next up (Figure 10-2) is a shot that resembles what you'll see when AJAX Warrior begins. I
say resembles because some of the setup of the game is random, so you may see something
slightly different each time you start the game.

414

CHAPTER 10 ©" AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

) AJAXWarrior - Mozilla Firefox =l5] x|
File Edt VYew Go Bookmarks Tools Help

Here is a summary of the tiles you will encounter:

H Boulder (you cannot walk on this)
— 1

. Bridge
r‘m Castle Faldon (must be standing in middle to enter)

Thick forest (you cannot walk on this)

Thin forest

Hover over scroller to pause it
Your name: [Aragorn The Weak
& 5

| Cone

Figure 10-1. The AJAX Warrior title screen

) AJAX Warrior - Mozilla Firefox B =[x

Fle Edt VYew Go Bookmarks Tools Help

Aragorn The Weak

Health: 100

 Gold Pieces: 10

> Welcome to the
realm of Xandor!
> What?

Cone

Figure 10-2. The player’s first look at AJAX Warrior

CHAPTER 10 ' AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 415

What does it look like when you are doing battle with a character in the game? Figure 10-3
provides the answer.

1) AJAX Warrior - Morilla Firefox

=18lx

Fle Edit View Go Bookmarks Tools Help

Aragorn The Weak
Health: 100

- mascu:
> Move North
> Enemy fired
weapon...
> Missed!
> Move North
> Enemy fired

i|| weapon...

|| > Missed!
> Move North
> Enemy fired
weapon...

Done

Figure 10-3. Oh no, time to fight!

One of the other activities you can engage in while playing is talking to characters, and in
fact, this is a must because some will give you clues you'll need, and more important, some

will provide you with items that are essential to winning the game. Figure 10-4 shows a con-
versation with a character.

416 CHAPTER 10 ©" AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

) aJAX Warrior - Mozilla Firefox

=T

Fle Edit View Go Bookmarks Tools Help

|| Aragorn The Weak
5 Health: 100
Gold Pieces: 10

- SuuL

> East

> East
> East
> South
> South
> South
> West
A > West
; !:s:.sl;:::pnse that it is » North

3: | wish it were so for me > Life is peace, is it
E: End conversaton not?

Done

Figure 10-4. Hopefully he won'’t just want to talk about the weather!

Lastly, although it is a somewhat pedestrian screen as compared to the others, Figure 10-5
shows what viewing your inventory looks like.

CHAPTER 10 ©" AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! a7

) 414X Warrior - Mozilla Firefox =l=1x|

Fle Edit View Go Bookmarks Tools Help

Aragorn The Weak
Health: 100

48 Fire Rain Spell (1) Heal Thy Sel spetl ¢y (| G0ld Pieces: 10

> Inventory
> Inventory
> Help
> Cast Spell
> Switch Weapon
> Help
> Switch Weapon
> Cast Spell
— Press SPACEBAR to return to game -- > Help
> Inventory
> Inventory

€ Freeze Time Spell (2) Blue key ¢

Done

Figure 10-5. Whaddaya got?

Now that we know what AJAX Warrior looks like, we have only one small, minor, itsy-bitsy
task to accomplish: tearing it apart and seeing what makes it tick!

Dissecting the Solution

First, please be sure to download the entire source for this project form the Apress website.
Unlike many of the other projects in this book, I cannot list much of the source because this
chapter is already rather long without it. It will therefore be important for you to have the
source to look at as we go through the project.

Let’s get a feel for the directory structure of AJAX Warrior. Unlike most of the other appli-
cations in the book, there is quite a lot to see here. Although it is still a typical webapp
structure, there is more on top of that, and Figure 10-6 shows it. In this case, to conserve
space, I have not expanded most of the branches to show the contents, so this is truly showing
only the directory structure.

418

CHAPTER 10 ' AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

= (=7 D:\tomcat5027\webappstajaxwarrior
) css
) img
s
=-{=7 WEB-INF
=477 classes
=77 com
=47 apress
=17 ajaxprojects
=7 ajaxwarrior
[#-{) commands

&5
-7 Filker
I framework
{71 gameobjects
i) listener
| Globals.class
=] MapHandler.class
| Utils.class

| commons-logging.propetties
| conversation_guard_1.xml
| conversation_guard_2.xml
| conversation_guard_3.xml
| conversation_monk_1.xml
| conversation_monk_2.xml
| conversation_monk_green_keymaster.xml
| conversation_peasant_1.xml
| conversation_peasant_2.xml
conversation_peasant_red_keymaster.xml
conversation_thief _1.xml
| conversation_thief_2.xml
conversation_thief _3.xml
| map_castle.dat
| map_main.dat
| map_town_a.dat
| map_town_b.dat
| map_village.dat
| simplelog.properties
1) gameSaves
= lib
I sre
web,xml
| died.htm
| displayInventory.jsp
| help.htm
| howToPlay.htm
index.jsp
main.jsp
notes.htm
| spellCasting.jsp
| store.jsp
| theStory.htm
| weaponSwitching.jsp
| won.htm

Figure 10-6. Directory structure layout of AJAX Warrior

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 419

At this point, the directory structure should be very familiar to you. In the root directory
you'll find a number of HTML and JSP files, 13 of them. index. jsp is our welcome page.
main.jsp is the actual game markup. All of the others are returned either as the result of an
Ajax request (died.htm, displayInventory.jsp, help.htm, spellCasting.jsp, store.jsp,
weaponSwitching. jsp, and won.htm). In the /css directory we find our typical single stylesheet,
styles.css. In the /img directory are all the images for the application. The /js directory con-
tains all the JavaScript for the game. We'll go over each one in some detail, and the same goes
for the HTML and JSP files. However, Table 10-1 offers a breakdown of what the various
JavaScript files contain.

Table 10-1. Breakdown of the Numerous JavaScript Source Files in AJAX Warrior

JavaScript File

Description

ActivityScroll.js

BattleFuncs.js
CastSpell.js
Conversation.js
GameFuncs.js

GameStateObject.js

GlobalsObject.jsp
Init.js
KeyHandler.js
SendAJAX.js
StoreFuncs.js

SwitchWeapon.js

UtilsObject.js
Vars.js
ViewChangeFuncs.js
XHRObject. js

Contains code for working with the activity scroll (the area to the right
below the player’s information where messages are shown)

Contains code used when the player is fighting a character

Contains code used when the player is casting a spell

Contains code used when the player is talking to a character

Contains core game code—updating the map on the screen, for instance

Contains a class that stores all the data defining the state of the game as
far as the client side goes

Contains a class that houses constants and preloaded images
Contains code that initializes the game

Contains code that handles all keystrokes in the game

Contains code that performs all Ajax requests throughout the game
Contains code used when the player is in a store

Contains code used when the player wants to switch what weapon they
are currently using

Contains a handful of utility-type functions
Contains the few global (page-scoped) variables used in AJAX Warrior
Contains code for switching between the various views in the game

Contains variables needed when making Ajax requests

After that we see the standard WEB- INF directory. There’s nothing unusual, except you see a
new directory: /gameSaves. As the name implies, this is where saved game data will be stored
so that a player can continue a game later on.

Finally, the WEB-INF/1ib folder contains all the libraries that AJAX Warrior depends on;
they are listed in Table 10-2.

420

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

Table 10-2. The JARs That AJAX Warrior Depends on, Found in WEB-INElib

JAR Description

commons-logging-1.0.4.jar Jakarta Commons Logging is an abstraction layer
that sits on top of a true logging implementation
(like Log4]), which allows you to switch the
underlying logging implementation without
affecting your application code. It also provides a
simple logger that outputs to System.out, which is
what this application uses.

commons-beanutils-1.7.0.jar The Jakarta Commons BeanUtils library, needed by
Digester.
commons-digester-1.7.jar Jakarta Commons Digester is a library for parsing

XML and generating objects from it. This is used to
parse some messages passed to the server by the
client code.

commons-lang-2.1.jar Jakarta Commons Lang are utility functions that
enhance the Java language. Needed by Digester.

javawebparts request vi.0 beta4.jar The Java Web Parts (JWP) request package; includes
some useful utility classes for dealing with HTTP
requests.

javawebparts core vi1.0 beta4.jar The JWP core package; required by all other JWP
packages.

Before we start looking at the code, let me begin by saying that in this chapter I will rarely,
if ever, list entire files, as I've tried to do throughout the rest of the book. One of my goals while
writing this book was to make it so that you could be reading it without a computer in front of
you and be able to understand what was going on. Therefore, I felt it was important to show
complete listings as much as possible. I could not always do this; my editor had something to
say about it! In this chapter, however, the decision was very easy: there’s simply too much
code, too many source files, for me to list them all. And once a few of them were not going to
be listed, it was easy to decide to not list any of them in their entirety. Therefore, for this proj-
ect, it is especially important that you download the source from the Apress website and
follow along as you read.

Enough prefacing—Ilet’s get to it!

0f Maps and Conversations

The first topic I'd like to look at is not really code, but it is very important: maps and conversa-
tions. First, maps.

All of the maps used in AJAX Warrior are 100X100 elements. Each element is a character,
and each character maps to a specific tile graphic (i.e., “m” is thin mountains, “w” is shallow
water, and so on). The map files are stored in WEB-INF/classes, and so are accessible, as they
are in the classpath. Printing a map here would be quite a waste of space, and would not look
like anything but gibberish. However, I encourage you to look at one or two of them, and also
look at the Global. java file to see what the various characters are.

Second, conversations. When the player talks to a character, it is not purely random, nor is
it purely scripted. It is a web of conversation “nodes.” Each node defines what the character
says, and three replies the player can give. For each reply, the change in the character’s karma

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 41

is stored, as well as the next node to jump to. The character’s karma is important because as
the player talks to the character, the character’s karma goes up and down (or stays the same).
If it reaches zero, the character is spooked and runs away. If it reaches 15, and the character is
one of the two key masters, then they’ll give the player the key (if they are not key masters, it
doesn’t really matter).

For each type of character that the player can talk to—guards, thieves, monks, and peas-
ants—there are three unique conversation webs. One peasant and one monk is a key master.
The conversations are stored as XML files, also in WEB-INF/classes. That XML looks like this:

<conversation id="thief 1">
<node id="3" response="What do you want?">
<reply id="1" karma="0" target="5">Nothing, I was just saying hello</reply>
<reply id="2" karma="-2" target="10">I want to kill all thieves</reply>
<reply id="3" karma="1" target="9">Umm, interesting conversation starter</reply>
</node>
<node id="4" response="That is none of my concern">
<reply id="1" karma="-1" target="8">
What I say should be of great concern
</reply>
<reply id="2" karma="0" target="14">I understand</reply>
<reply id="3" karma="1" target="6">
Well, let's talk about something else
</reply>
</node>
</conversation>

As you may have guessed, writing these XML files by hand is a bit tedious. So, in the
source directory you'll find a Microsoft Excel spreadsheet. If you have Excel, load it up and
play a bit. You'll find that each conversation is mapped out in a separate tab, and macros are
mapped to buttons to validate the scripts and write out the XML. A script has to pass a num-
ber of validations, including making sure that there are no unreachable nodes; that no reply
references its node; that there is a positive, negative, and neutral karma adjustment reply for
each node; and that the character response and replies do not exceed a maximum length.

Make no mistake; it still can be a bit tedious to write a script, even with this spreadsheet.
But it is considerably easier than doing it manually, and the validations ensure that the scripts
will make some kind of sense!

The Client-Side Code

Although it is not strictly speaking client-side code, let’s begin by looking at web.xm1, just to be
sure there is nothing fishy going on there—and as it turns out, there’s not! We have our typical
welcome page defined as index. jsp, and a session timeout value set to 60 minutes. We also
see a single servlet defined:

<servlet>
<servlet-name>FrontServlet</servlet-name>
<servlet-class>
com.apress.ajaxprojects.ajaxwarrior.framework.FrontServlet

422 CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>FrontServlet</servlet-name>
<url-pattern>*.command</url-pattern>
</servlet-mapping>

All of the requests made during our game—all our Ajax requests—will go through this servlet,
allowing us to have a centralized place to handle some common functions, as we'll see later.
We then see a single filter defined:

<filter>
<filter-name>sessionCheckerFilter</filter-name>
<filter-class>

com.apress.ajaxprojects.ajaxwarrior.filter.SessionCheckerFilter

</filter-class>

</filter>

<filter-mapping>
<filter-name>sessionCheckerFilter</filter-name>
<url-pattern>*.command</url-pattern>

</filter-mapping>

Although we'll see it later, the purpose of this filter is to be sure that a game has been cor-
rectly started for any request that passes through our servlet. If a game has not been properly
started, the request is directed back to index.jsp. All our requests will end with . command,
which is what we map the servlet to.

Lastly, we have a single context listener:

<listener>
<listener-class>
com.apress.ajaxprojects.ajaxwarrior.listener.ContextListener
</listener-class>
</listener>

This listener will handle any server-side application initialization that should occur at
startup. Again, we'll see this in detail later.

index.jsp
The next thing to examine is index. jsp. This is the initial page the player sees, the one with the
AJAX Warrior title banner and the scrolling area. The first thing found in the code is some
image preloads for the buttons you see on the screen. There are two images for each button: a
normal version and the version seen when you hover over the button with the mouse. After
that is a batch of variables beginning with vs_, which are used for the vertical scroller in the
middle of the page.

The first executable code we see is the init() function, which is called in response to the
page’s onLoad event:

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 423

function init() {

vs_contain = document.getElementById("vs_container");
vs_content = document.getElementById("vs_contents");
layerCenterH(vs_contain);
layerCenterH(document.getElementById("controls"));

<% if (request.getAttribute("Error") != null) { %>
alert("<%=request.getAttribute("Error")%>");

<% T %

switchContents("theStory");

} // End init().

First, references are grabbed to two elements: vs_container and vs_contents. Note
that is used instead of <div> to avoid the line break that <div> puts after itself. The vs_
portion stands for (v)ertical (s)croll, and vs_container is the with the gray background
and is the area the scroller takes up. The vs_contents is where the actual contents that
will be scrolled go. Note that these two reference variables are page-scoped and are used
throughout the rest of the page.

After that, we use the layerCenterH() function that we have previously seen in a number
of chapters to center the vertical scroller. The same is done for the controls <div>, which con-
tains all our buttons and a text box for entering a name.

After that we have a JSP scriptlet that renders an alert if an attribute named Error is found
in the request. This will be present if the name the player enters is already in use, or if they
tried to continue a game that does not exist.

Finally, switchContents() is called, passing in the ID of a <div> that contains text we want
to scroll:

function switchContents(inWhichText) {
stopScroller();
vs_content.innerHTML = document.getElementById(inWhichText).innerHTML;
resetScroller();
startScroller();
} // End switchScrollText();

As you can see, the scroll is first stopped by calling stopScroller(), and the contents of
the that vs_content points to are updated with the contents of the <div> passed in.
Then the scroller is reset by calling resetScroller() (so that if it was previously scrolling it
will start from the beginning of the new content), and it is then started again by calling
startScroller(). switchContents() is called when the user clicks The Story, How To Play, or
Important Notes button.

Speaking of resetScroller(), let’s see what it looks like:

function resetScroller() {
// Determine milliseconds
vs_milliseconds = 1000 / vs_scroll speed;
// Get height of container
vs_container height = vs_contain.style.height.substr(o,
vs_contain.style.height.length - 2);

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

// Get height of contents
vs_contents_height = vs_content.scrollHeight;
// Start off bottom
vs_contents_top = (1 * vs_container_height) + 20;
vs_content.style.top = vs_contents_top;
// Make contents visibile
vs_content.style.visibility = "visible";
} // End resetScroller().

The variable vs_milliseconds specifies how many times per second the timer that causes
the contents to scroll will be fired. vs_scroll speed specifies how many lines the contents
should scroll up per second, so dividing 1,000 by this number gives us the number of
milliseconds required between each move (since there are 1,000 milliseconds in a second).
vs_container height is the height of the container , and likewise, vs_contents_height is
the height of the actual contents to be scrolled, both of which are needed to determine when
scrolling has completed and the contents should recycle and scroll again. Note that the value
returned by getting the value style.height is in the form 99px, where 99 is the actual height. So,
we need to strip the px portion since we just want the number, hence the use of the substr()
function. vs_contents_top is a variable that controls the value of the top style attribute. The
way the scroll works is quite simple: the vs_contents is set up to clip the contents,
which means that scroll bars will not be present if the contents of the are larger than
the span itself, and the will not resize to accommodate the contents. So, if we set the
value of the top style attribute of the contents to something larger than the height of the con-
tainer , the contents won't be visible. If we then slowly subtract from that top value, the
contents will slowly scroll up from the bottom of the container . If we keep doing this
until the contents have completely scrolled up (which means the top style attribute will be a
negative value at that point, which is perfectly valid), we have ourselves a vertical scroller!

The startScroller() function is literally only this line:

vs_interval id = setInterval('doScroller()', vs milliseconds);

This simply sets up a timeout that fires after the amount of milliseconds determined in
resetScroller(). As you can probably guess, stopScroller() is nothing but clearing this time-
out, and also hiding the contents of the scroller.

The last scroller-related function is the target of the timeout, doScroller(), and I think
you'll be surprised at how simplistic it is:

function doScroller() {

// Only do this if we're not paused

if (lvs_pause) {
// Move up one pixel
vs_contents_top--;
// If we've scrolled off the top, reset to off the bottom
if (vs_contents top < -vs_contents height) {

vs_contents top = (1 * vs_container height) + 20;

}
// Reposition contents layer
vs_content.style.top = vs_contents_top;

}
} // End doScroller().

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 425

Yes, that is indeed it! We first check the value of the vs_pause variable, which is set to true
when the player hovers over the scroller. This allows the player to pause the scroller to read it.
If that variable is false, though, we simply subtract 1 from the vs_contents_top variable. We
then check to see if we've scrolled all the way, which is done by comparing the value of
vs_contents_top with the height of the contents stored in the variable vs_contents_height.
When the former is less than negative the height, the scroll is complete. To make that a bit
clearer, let’s say the height of the contents is 200 pixels. When the top style attribute of the
contents is less than -200, the scroll has completed. Remember, the contents of the container
 will clip, so that if the contents are —200 pixels above the top of the container, it is no
longer visible. At that point, the top attribute is reset to essentially push the contents down
below the container, and finally, the top style attribute of the contents is updated with
the new value of the vs_contents_top variable.

The markup on the page is quite simple as well. We have a <div> with the ID pleaselWait.
This is displayed when the user clicks New Game or Continue Game. This is done to avoid
some JavaScript errors that can occur because of the image rollovers on the buttons. In
essence, the page will be overwritten in memory with the actual game, but the screen will not
immediately be updated. This means that if you roll over a button, the JavaScript that handled
the rollover will have been overwritten, and an error occurs. The error is actually “invisible” to
the user, but I did not like seeing it showing up even just in the debugger in Firefox, and this
gets around it.

Following that is the AJAX Warrior title banner. Immediately after that are the two
elements for the vertical scroller. Note the onMouseOver () handler on the container; this han-
dler is used to pause the scroller.

After that is our control <div>. This contains the buttons, as well as the text box for enter-
ing the player’s name. The latter is part of a form that is submitted to startGame.command. Note
the hidden whatFunction field. This will be populated either with the value “newGame” or
“continueGame”, depending on which button the player clicks. When the form is submitted,
the checkName () function is called. This verifies that something was entered, and that it does
not contain any invalid characters (since this will be a filename, only numbers, letters, dashes,
underscores, and spaces are allowed).

Following that are three JSP includes: one for the contents of The Story, one for the con-
tents of How To Play, and one for the contents of Important Notes. The files included are,
unimaginatively, theStory.htm, howToPlay.htm, and notes.htm. Each is nothing but plain text
wrapped in a <div>. Have a peek if you don’t believe me!

main.jsp

Once the form is submitted and the server determines the correct outcome, either index.jsp
will be shown again (if an error occurred, such as the game the player wants to continue can-
not be found) or main. jsp will be shown. Let’s now jump right into main. jsp. Refer to the
listing for this JSP that you've downloaded from the Apress website.

There really is not any actual code here, just a whole batch of JavaScript imports... a JSP
scriptlet wrapped in a JavaScript <script> block (I'll explain this in just a moment)... and
finally, a whole bunch of <div> elements.

Let’s jump back to that scriptlet for a moment. We'll learn shortly that there is a GameState
object that stores, well, information about the current state of the game. In fact, there are two
such objects, one server side and one client side. They both store different sets of information,
but to properly save and restore a game, we need to save and restore both objects.

426

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

When main. jsp loads, recall that it could be as a result of a new game being started or an
existing game being continued. In the latter case, we'll find that a serialized version of the
client-side GameState object will have been put in request as an attribute under the name
clientSideGameState. To continue the game, we need to reconstitute this serialized version
into a real GameState object. The details of that reconstitution will be explored when we get to
the JavaScript source, but in short, the string is put into a page-scoped variable named
clientSideGameState. This variable is then passed to the init() function as a result of the
onLoad event handler.

As for the <div> elements, divGame is the entire game area. Everything else is contained
with this element. divBorder is the container of the border image. divMap is the actual game-
play area. imgCharacter, which is an tag and not a <div>, is where the close-up of a
character the player is talking to appears. divTalkingReplies is the blue box superimposed
over the character listing the replies the player can give during conversation. divInventory,
divSpellCasting, diviWeaponSwitching, divStore, divHelp, and divGameEnd are areas that will
have dynamic content placed (except divHelp, divGameEnd, and divStore, which are static) and
will obscure the gameplay area. divName, divHealth, divHitPoints, and divGoldPieces are
areas that will display the player’s current information on the right. Finally, divActivityScroll
is the area to the right below the player’s information where messages are displayed.

styles.css

Note that all of these have a specific style class applied, and those classes are found in styles.css.
They define font styles and colors and such, but also define positioning for the elements. All of the
attributes used should by now be quite familiar to you; nothing fancy is going on. The one aspect
that deserves some discussion is positioning.

It’s important to remember that all of these are children of the divGame element. So, when
we position another element within that one using the absolute value for the position attrib-
ute, it is an absolute value that is relative to the containing element. That may be a bit
confusing, but you have to think like Einstein in terms of relativity. Usually, when absolute
positioning is used, it is absolute relative to the page itself, which makes it seem really
absolute, but in fact it is still relative.

The positioning may be easier to comprehend if you see it graphically. Figure 10-7 shows
an exploded view of where the various layers get positioned. I use the border as the reference
because in reality, all of the positioning is based on fitting into specific areas of the border.
Recall, however, that the border is not the outer element; it is a container within a <div>. But
the border is absolutely positioned within that container and is sized to fill the entire con-
tainer; therefore, for all intents and purposes, you can think of all the other <div> elements as
positioned relative to the border, as the diagram shows.

If you are uncertain about all this, an easy way to see is to add display:none; to the
cssBorder class in styles.css and then start the game. With the border not visible, note that
all the other elements are still where they should be. Again, because they are positioned
absolutely within the divGame container, not with regard to the border, they appear to be
positioned relative to the border.

CHAPTER 10 ' AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

divMap divName |
(divinventory, divSpellCasting, divHealth
divWeaponSwitching, divStore,
divHelp, divGameEnd) [divHitPoints |
divGoldPieces

divActivity
Scroll

Figure 10-7. How the various <div> elements relate to one another positionally

died.jsp

Well, now, that is quite a dreary heading! This HTML document is displayed when the player
dies (or when they kill a key master, since the game cannot be won at that point). Listing 10-3
contains the entire contents of this file.

Listing 10-3. died.htm, in its Entirety

<div style="position:absolute;top:130px;left:2px;width:416px;height:100px;">
<center>
Thou art dead!

Please do try again!

Press any key to go to start screen.
</center>
</div>

What happens is that with each of our JSON responses from the server, two elements are
present: di and wn. di will be true if the player died; wn will be true if the player won the game
(regardless of what the request was, since at least dying can happen in multiple ways). When the
JavaScript function that sends Ajax requests (which we’ll explore in a moment) sees that di is true
in the response, it immediately sends another Ajax request targeting died.htm. The contents of
this file are used to populate the divGameEnd <div> inmain.jsp, and those contents are then dis-
played. This process is identical for when the player wins the game, and the markup is essentially
identical to that shown in Listing 10-3, with a different image and different text, of course.

427

428

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

displaylnventory.jsp

This file is a bit meatier. Here we're constructing markup to display the player’s inventory. The
markup is constructed by first getting the GameState object instance from request, and then
getting the inventory collection from it. For now, it is enough to understand that the GameState
object is an object on the server that stores all the information about the current state of the
game. Things like the player’s name and health, their inventory, what weapon they are cur-
rently using, and so on are found there. Recall that earlier I mentioned that there is a
GameState object on both the client and server. The server-side object contains much more
information, but both objects serve the same basic purpose.

Once we have the inventory collection, it is first checked to see if it is empty. If it is, some
simple markup telling the user they are holding nothing is rendered. If it is not empty, though,
the code begins to iterate over the collection. For each item, we determine what it is and out-
put the appropriate markup. For instance, if it is the blue key, we see this:

case Globals.ITEM KEY BLUE:
out.print("<img src=\"img/item key blue.gif\" " +
"align=\"absmiddle\" width=\"16\" height=\"16\">");
break;

Globals is a class that contains a large number of constants used throughout the code. One of
them is the code representing the blue key.

Note that the rendered markup is forming a table with two columns. So, we need to keep
track of whether the item we're adding is in the first or second column so that we can end the
row properly when the time comes. The firstColumn variable is used to keep track of that.

For each item in the inventory, we make a call to Utils.getDescFromCode(). Utils is a
class that contains a handful of utility functions, getDescFromCode() among them. This func-
tion returns a descriptive string for the item code passed in; for instance, if we pass it A, which
is the code for the blue key, it will return Blue key.

help.htm

This is the help screen the player sees when they press the H key during play. It is a pretty
pedestrian piece of code and is just plain old HTML. I therefore leave this in your capable
hands to check out.

spellCasting.jsp

This is the page that we display when the player wants to cast a spell. It is conceptually (and
even structurally) very similar to displayInventory.jsp. Like that JSP, we get the inventory of
the player from GameState, and check to see if it's empty. If it is, we render the markup to tell
that to the player. If it isn’t, we begin to iterate over it.

This time around, we know that there are only three possible spells, and we want to have
specific keys the user can press for each to cast them. So, we switch on the inventory code and
display the appropriate text for the spells only. We must also keep track of which spells the
player has. Think of it this way: there is some JavaScript floating around somewhere that we’ll
see shortly that handles key presses. When the spell casting display is showing, the player can
press E H, or T, corresponding to the spells they can cast. However, how does that JavaScript
know which of those is valid, because remember, the player may not have any spells, or may

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 429

not have them all? It would be nice to not have to go to the server just to find out the player
doesn’t have a spell they requested casting. So, we construct a list of the spells the player has
as we render this markup. This is a space-separated list of the codes for the spells. So, in other
words, if the player had all the spells, we would get the string “* ; . dummy”; each of those is
the code for a given spell (the codes will become a bit clearer later—just go with the flow for
now!). At the end of string we also put “dummy”, so that when the string is tokenized, there is
always a value at the end and not a delimiter, which would cause a problem.

This is where it gets a bit interesting: at the very end of spel1lCasting.jsp, we see this line:

<script>gameState.spellsPlayerHas = "<%=spellsPlayerHask%>";</script>
pt>g P y P y P

Recall that this page will be rendered and returned as the result of an Ajax call. The JavaScript
making that call looks for a script block in the response, and if found, eval()’s it. So, in this
case, the result is that the spellsPlayerHas field of the client-side gameState object will be
populated with the string that was constructed listing what spells the player has. So, that field
can then be used when the player presses a key, say T, to see if they have that spell. If not, the
keystroke is ignored.

store.jsp

The player can enter a store in the two towns and purchase various items. This JSP is the
markup that is displayed when the player is in the store. It is nothing but a <table> listing all
the items and how much they cost. The costs are taken from the Globals object. Aside from
that, there’s not much to see here, so have a quick peek and let’s move along.

weaponSwitching.jsp

This is the file that renders the markup seen when the player wants to switch weapons. It is
once again very much along the same lines as spellCasting.jsp and displayInventory.jsp.
The only real difference is that because “Bare hands” is always an available option, there is
never the possibility of inventory being empty or the player not having any spells to cast, as in
the other two JSPs. So, there is no branch checking for emptiness here. Aside from that, it is
very similar. Again, we have a string of weapons the player has built up, and again, a <script>
block at the end is rendered and will be eval()'d to get the value into the gameState object to
use when keystrokes are handled.

And with that, we have seen all of the markup for AJAX Warrior, and we've examined the
stylesheet used. Now let’s move on to the JavaScript, where most of the action is.

Globals.js

The first JavaScript file I'd like to discuss is GlobalsObject. js. This file contains the definition
of a single JavaScript class, GlobalsObject. This is similar to the Globals class on the server in
that it stores some constants used throughout the code. The vast majority of what is in this
object are preloaded images. Note that the extension of this file is . jsp and not . js as the rest
are. The reason is that we need to reference the values in the Globals class on the server, and
we could not do that unless this was a JSP. The container will kindly evaluate the JSP for us,
even when a <script> tag on a page includes it.

Let’s look at a snippet of the beginning of this code:

430 CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

function GlobalsObject() {

// Viewport Sizes.

this.TILE_WIDTH = <%=Globals.TILE_WIDTH%>;

this.TILE_HEIGHT = <%=Globals.TILE HEIGHT%>;

this.VIEWPORT WIDTH = <%=Globals.VIEWPORT WIDTH%>;
this.VIEWPORT HEIGHT = <%=Globals.VIEWPORT HEIGHT%>;
this.VIEWPORT HALF WIDTH = <%=Globals.VIEWPORT HALF_WIDTH%>;
this.VIEWPORT HALF HEIGHT = <%=Globals.VIEWPORT HALF HEIGHT%>;

Asyou are well aware by now, we create a class in JavaScript by creating a function. Inside it
we can define fields by using the this keyword. So here we are adding some fields: TILE_WIDTH,
TILE HEIGHT, VIEWPORT WIDTH, VIEWPORT HEIGHT, VIEWPORT HALF WIDTH, and VIEWPORT HALF_HEIGHT.
The values for these fields are all taken from the server-side Globals class (they are static finals).
Since there is no such thing as final in JavaScript, we cannot get the true constants effect here;
these fields are still alterable. We just have to hope the programmer is smart enough to not do so.

There are constants here mimicking almost all of the values in the server-side Globals
class. As I mentioned earlier, most of the contents are image preloads. For instance:

this.imgITEM GOLD = new Image(<%=Globals.TILE WIDTH%>, <%=Globals.TILE HEIGHT%>);
this.imgITEM GOLD.src = "img/item gold.gif";

This is the preloaded image for the chest of gold the player can pick up. We also see some
constants defined for key handling, like so:

this.KEY_SPACEBAR = 32;
this.KEY_LEFT_ARROW = 37;
this.KEY_RIGHT ARROW = 39;
this.KEY_UP_ARROW = 38;
this.KEY_DOWN_ARROW = 40;

The numbers are the key codes that will be received in our keystroke event handlers when
the player presses a key. Better to reference these constants throughout the code than the
numeric values themselves!

Init.js
The init() function, contained in init. js, is called onLoad of main.jsp. It is responsible for
initialization tasks for the game. These include

* Instantiating a number of objects such as GameStateObject and GlobalsObject
* Clearing out the activity scroll (the area to the right where messages appear)

* Reconstituting the GameStateObject instance if a game is being continued (in fact, the
object referenced by the gameState variable itself does this, but init() makes the deci-
sion whether to ask the object to do it)

e Centering the game in the window

* Creating the 169 images that are the tiles our map display is built from

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

* Hooking the keyUp event handler so we can process key presses

¢ Hiding the various secondary displays (inventory, spell casting, help, weapon switch-
ing, and the store) since they are not hidden initially

* Making the initial Ajax request to display the map

I think that for the most part this code is pretty self-explanatory, but one part is worth a
second look—the code that creates those map tile images:

var x;
var y;
for (y = 0; y < Globals.VIEWPORT HEIGHT; y++) {
for (x = 0; x < Globals.VIEWPORT WIDTH; x++) {
var newImg = document.createElement("img");
newImg.style.position = "absolute";
newImg.style.left = (x * Globals.TILE WIDTH) + "px";
newImg.style.top = (y * Globals.TILE HEIGHT) + "px";
newImg.width = Globals.TILE WIDTH;
newImg.height = Globals.TILE HEIGHT;
newImg.id = "tile-" + vy + "-" + x;
var map = document.getElementById("divMap");
map.appendChild(newImg);
document.getElementById("tile-" + y +
Globals.imgTILE BLANK.sxc;

non

+ X).srC =

When you're playing the game and you see the map, you're seeing a viewport on a larger
world. The map for the entire world of Xandor, for instance, is 100 tiles wide by 100 tiles high.
However, you only see 13X13 of that at a time. The viewport is a grid of 13X13 images (169 in
total). So, to display a viewport on the map, we get a chunk of the map that is 13 lines tall and
13 characters wide, where each character is a code representing a specific tile type (i.e.,
mountains, water, a town). So, the bottom line here is we need 169 images on the page whose
src attribute we can update to reflect the tile that should currently be shown in it to form the
viewport on the map.

However, it would be unwieldy to actually have 169 tags on the page. Instead, we
use some DOM functions to create them. We begin with a loop, which iterates the number of
times there are lines in the viewport (13). Another loop inside that iterates for each character
in the row (13). For each, we create a new object. We set its position style attribute to
absolute, and set its width and height to the width and height defined in Globals for a tile
(32X32 pixels). We then set its left and top positions, using the value of the loops to form a
grid. We then give it an ID formed by taking the string “tile-” and appending the y loop value
and x loop value, separated by a dash. Finally, we get a reference to the divMap <div>, and
append the new image object as a child of it. Finally, we get a reference to the we just
added and set its src to our blank tile. And that’s how we get a grid of images to create our map
viewport.

431

432

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

GameState.js

T have mentioned this GameState object thing a few times, and now it is time to check it out.

The GameStateObject is, by and large, just a JavaBean, or what would be the equivalent of
aJavaBean in JavaScript. We have some fields here: activityScroll, which is an array that
contains the messages seen in the activity scroll to the right; currentView, which is a reference
to the <div> we are currently seeing (divMap, divInventory, etc.); and previousView, which is
used when we view inventory, help, spell casting, or weapons switching, so we know whether
we should show the map again, or whether we were in the middle of battle and should show
the battle view again. spellCast and weaponSwitched are two simple true/false flags used to
determine when a spell was just cast or when a weapon was just switched. weaponsPlayerHas
and spellsPlayerHas are the strings generated by weaponSwitching.jsp or spellCasting.jsp to
tell us which weapons or spells the player currently has. talkAttackMode determines whether
the player is currently in Talk mode (blue border) or Attack mode (red border, which means
the player will attack any character they come in contact with). currentheapon specifies
which weapon the player is currently using. fireProjectile, similar to spellCast and
weaponSwitched, tells when a projectile weapon (slingshot or crossbow) has been fired. All of
the variables prefixed with “projectile” are used when an arrow is flying either from the player
or from a character. battleEnemyTurn is another flag that is set to true when in battle it is the
character’s turn to move.

Next we have the serialize() function. This is used when the player requests that the
game be saved. This function constructs some XML representing the current gameState object.
However, as it turns out, it’s not important to save all the data contained in this object, so we
ignore the unimportant fields and only serialize what we absolutely have to in order to persist
the state of the game. This is equivalent to marking a field transient in Java, but since there is
no notion of transient fields in JavaScript (mostly because there is no inherent notion of serial-
ization), we simply ignore what we do not need to save.

To go along with serialize() is reconstitute(), which is called when a game is loaded (as
aresult of a call from that branching logic in Init. js we saw earlier). Recall that what the
server returns to us is the same data that serialize() constructed, but as a delimited string
(delimited by ~~~). So, we split this string, and set the fields of the gameState object based on
its values. No big deal.

Utils.js

Utils.js contains a single class, UtilsObject, which itself contains two functions that we have
previously seen: layerCenterH() and layerCenterV(). Although this is the first time we've seen
them as two functions like this, we have in fact seen and examined the code they contain: in
InstaMail in Chapter 5 and PhotoShare in Chapter 7. In those chapters, we combined the code
and used it to center the Please Wait layers. Here, I've broken them out into two separate
callable functions for more flexibility. Both functions accept a reference to some element on a
page, and they then center that element, horizontal or vertically as applicable. Since we
reviewed those functions in previous chapters, I will not go into detail here.

Vars.js

One of the things I wanted to demonstrate with this application is the concept of not polluting
global namespace, or not using a lot of global variables. When you're trying to write more

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

robust, professional-quality JavaScript, it is a good idea, as it is in Java (although you do not
have a choice in Java as you do in JavaScript) to deal in objects as much as possible. So,
instead of having the functions in Utils. js in page scope, for instance, I created a UtilsObject
to house them. The benefit to this is that it avoids naming conflicts. If you wanted to have
layerCenterH() at page scope, you could; the two would not conflict.

However, it is virtually impossible for an application of this complexity to not have some
global variables, and indeed we have a few. But very few indeed:

var Globals = null;
var Utils = null;
var gameState = null;
var xhr = null;

That is the entire contents of Vars. js, minus the comments. Globals is a reference to the
instance of the GlobalsObject class. Utils is a reference to the UtilsObject class. gameState is
areference to the GameStateObject class, and xhr is a reference to the XHRObject class.

XHRObject.js

Speaking of the XHRObject, we now come to XHRObject. js, which defines that class. Listing 10-4
shows the entire contents of this file. (Sorry, I said I wouldn'’t do this too often!)

Listing 10-4. Against My Own Rule, the Entire XHRODbject.js File

Voo

* This object contains three variables used to make Ajax requests. The member
* variable request is actually the XMLHttpRequest instance. The callback

* member is the function that is the callback for the current Ajax request.

* The json member is the parsed JSON response.

*/

function XHRObject() {

this.request = null;
this.callback = null;
this.json = null;

/**
* Function to null our XMLHttpRequest-related vars.
*/
this.clearXHRVars = function() {
this.callback = null;
this.json = null;
this.request = null;
} // End clearXHRVars().

} // End XHRObject.

433

434

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

As the comments say, this object contains some fields used during Ajax request sending.
request is literally the current XMLHttpRequest instance, callback is a reference to the function
that is the callback for the request, and json is the parsed JSON response from the server.

SendAJAX.js

Having seen the XHRObject class, let’s now see what makes use of it: the sendAJAX() function
contained in SendAJAX. js. This function is used by all the other game code to make Ajax
requests.

sendAJAX() accepts a number of parameters. First, it accepts a reference to the function
that will be the callback. This will nearly always be the function that called sendAJAX(). It also
accepts, as you would expect, the URL to submit the request to. It accepts both a query string
(fully formed) and POST data. It technically will accept and use both; however, the call
method (GET or POST) is determined by the presence of post, so if you send POST data to
sendAJAX(), the method will be POST, regardless of whether or not there is a query string (but
the query string will be used even if POSTing).

As we discussed in the “How We Will Pull It Off” section earlier, this function sets itself up
as the callback in the newly instantiated XMLHttpRequest. So, first it checks whether there is
already an XMLHttpRequest object reference in gameState (the xhr field). If so, then sendAJAX()
proceeds (via an if branch) to check the status of the request. When that request completes,
the results sent back by the server will be processed.

If there is no existing request in progress, the function instantiates a new XMLHttpRequest
object, and attaches a parameter to the query string that has a value of the current date/time
in milliseconds. This ensures that the browser will not cache the response and thereby cause it
to appear as if the server is not responding (which it isn’t because the request would never
have reached the server). It then sets the method based on whether or not inPostData is null,
and fires off the request.

When the response is received, the else part of the branch logic is fired, continually of
course, until the response is good. When it is, the response is first eval()’d into xhr.json,
which we'll reference from then on.

A number of various checks are then performed. If the ex member is present in xhr. json,
then an exception occurred on the server and an alert box is displayed to let the player know.
If the di member is set to true in xhr. json, then the player died, and the player’s information is
updated (so that their health can be shown as 0). Also, the activity scroll is updated so that the
final message from the server is seen, and the game end screen is shown via the line

showGameEnd("died");

showGameEnd () accepts the values “died” and “won”, and loads the appropriate content
(died.htm or won.htm).

If the ct member is present in xhr. json, that means we are beginning to talk to a charac-
ter, so the startTalking() function is called to do that (we'll see that in a bit).

If the mo member in xhr. json indicates we are now in Battle mode, and the current view is
not Battle mode, that means we need to switch to Battle mode now. We do this by setting the
current view to battle, and calling updateMap(), which will redraw the screen in Battle mode.

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 435

Lastly, if the mo member in xhr. json indicates we are not in normal (i.e., walking around
the map) mode, and the current mode on the client is Battle, then we are coming out of battle,
which again requires setting the current view and calling updateMap().

Note that each of these checks results in returning from the function. Before that, how-
ever, a call to xhr.clearXHRVars(); is made, which nulls out the xhr.request, xhr.json, and
xhr.callback fields. It is only at this point that another Ajax request could occur (recall that
the check to see if xhr.request is null is the first thing this function does).

Now, if none of these conditions applied, then sendAJAX() needs to call on the original
callback that was passed into it. It does so, and captures the result. If the result is true, then
xhr.clearXHRVars() is called. If false, it does not make that call. That way, if the callback func-
tion itself wants to make an Ajax request, it can do so. Think about what would happen if
xhr.clearXHRVars () was called in that case—it would step on that new Ajax request and the
request would not go through. Fortunately, this situation only comes up a few times, a major-
ity of the time the callback will return true.

ActivityScroll.js

This source file contains a single function, updateActivityScroll(), which is called any time a
new message should be displayed to the user in the activity scroll on the right side.

The activity scroll itself, as you might recall from our discussion of GameStateObject, is
just an array. It always has 11 elements, which is how many can fit in the area allotted on the
screen for messages. The messages are displayed top to bottom. In other words, each time the
activity scroll is updated, it is redisplayed in full, and item index 0 is always the text shown at
the top of the screen area, and so on down. So, in order for this to be a “scroll,” we need to shift
the contents of the array “up,” that is, toward the 0 index. The 0 index element will fall into the
“bit bucket.” Fortunately, JavaScript arrays have some neat utility functions, among them
shift(), which does precisely what we need. Also quite convenient is the push() method,
which adds an element to the end of the array. This is nice because we don't have to worry
about replacing a certain index or anything like that; shift() reduces the array’s size to 10
elements, and push() then brings it back up to 11, and the net result is precisely what we want.
Once that is done, we generate some simple markup from the contents of the array, and
update the divActivityScroll <div>.The last piece of the puzzle is to scroll the contents of
the <div> far enough so that the last element is always shown entirely. The problem here is
that some messages returned by the server will actually take up two lines. So, if we didn’'t do
this final scroll, we'd find that some messages get cut off on either the top or bottom, and
sometimes the activity scroll text would extend downward a bit; both results are undesirable.
Scrolling the whole <div> to an arbitrarily large value effectively pushes all the text down as far
as it will go so that nothing is cut off, and in doing so, the <div> does not need to scroll.

StoreFuncs.js

I'want to jump around just a bit here and look at the two functions in this file that relate to
when the player is in a store and can purchase items. These two functions are perhaps the
simplest examples that show the structure that most of the remaining functions will take.
Listing 10-5 shows this code.

436

CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

Listing 10-5. The Entire Contents of StoreFuncs.js
/**
* This function is called when the player steps on a store trigger tile.
*/
function showStore() {
if (xhr.request == null) {
sendAJAX(showStore, "store.jsp", "", null);
} else {
showSecondaryView(xhr.request.responseText, Globals.VIEW STORE);
return true;
} // End xhr.request == null if.
} // End showStore().

/**
* This function is called when the player purchases an item in a store.
*/
function purchaseItem(inWhichItem) {
if (xhr.request == null) {
sendAJAX(purchaseItem, "purchaseItem.command", "?whichItem=" +
inWhichItem, null);
} else {
updateActivityScroll(xhr.json.mg);
return true;
} // End xhr.request == null if.
} // End purchaseltem().

Both of these functions are called to fire off an Ajax request. showStore() is called when
the user steps onto a tile right in front of a store, thereby entering the store. purchaseItem(),
as one would expect, is called when the player decides on an item to purchase. Note the over-
all structure of both: a simple if checks to see whether xhr.request is null, and an else block.
If it is null, a call to sendAJAX() is made. If it is not null, the else block kicks in, and the store
view is shown (in the case of showStore()) or the activity scroll is updated (in the case of
purchaseItem()). Most of the other functions we'll look at have this same basic structure,
so it is important to understand the flow through them. To help with that understanding,
Figure 10-8 shows a flow diagram of a call to one of them, and how sendAJAX() is involved.

CHAPTER 10 ' AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 437

1 - User selects item
to purchase,
purchaseltem() called.

A

l

e 9 - Complete the
=B m::aquest No —> purchase item
null? function, return
true.
Yes
Y
3 - Make Ajax request 10 - Control returns to 11 - Was true
by calling sendAJAX). sendAJAX(). returned?
Yes
A 4
4 - sendAJAX() | «— Not yet 12 - Clear
entered. < XHR vars.

5 - Is xhr.request
null?

7 - Is response
complete and 0K?

13 - Cycle complete, next Ajax
request can proceed

Yes Response returns Yes
6 - Make request 14 - Cycle complete,
using 8 - Call the REAL purchaseltem() presumably <
XMLHttpRequest, callback, made a new Ajax request.
set sendAJAX() purchaseltem().
as callback.
| I

Figure 10-8. Flow diagram of a typical Ajax request in AJAX Warrior

438 CHAPTER 10 ©* AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY!

KeyHandler.js

The next important piece of code to examine is the key handler code as defined by the func-
tion keyUp (). This function handles all the key presses in the game (as registered with the
browser in the init() function).

The first thing we see is our code to get the key code pressed in a cross-browser fashion:

var ev = (e) ? e : (window.event) ? window.event : null;
if (ev) {
keyCodePressed = (ev.charCode) ? ev.charCode:
((ev.keyCode) ? ev.keyCode : ((ev.which) ? ev.which : null));

}

After that comes an if statement with a number of else ifs in it. The logic branches
depending on which view is current, since different keys are valid in different views. For
instance, the E key, which enters a community when walking around the map, does not have
any meaning while in battle. Within each if block is a switch, like the following:

switch (keyCodePressed) {
case Globals.KEY_LEFT_ARROW:
updateActivityScroll("West");
updateMap("left");
break;
case Globals.KEY_RIGHT_ARROW:
updateActivityScroll("East");
updateMap("right");
break;
..and so on ..
}

The vast majority of the cases simply call the appropriate function, such as updateMap()
shown here (the call to updateActivityScroll() as well is common). There is some added
complexity when buttons are pressed when the spell casting view or weapon switching views
are shown; they can be called from either normal or battle view, so the code has to switch back
to the appropriate view. Likewise, the cases for Battle mode are a bit more complex; for
instance, the arrows keys can indicate movement, or they can indicate the direction of fire if
the player previously pressed F for Fire Projectile. But again, by and large, this entire chunk of
code amounts to “If key X was pressed, call function X()... if key Y was pressed, call functionY,”
and so on (where there is a different set of ifs for each view).

ViewChangeFuncs.js

This file contains a number of functions that switch between the various views in the game.
The views are

* Normal view (when the player is walking around the map)

¢ Battle view (when the player is fighting a character)

CHAPTER 10 " AJAX WARRIOR: BACK TO THE FUTURE IN A FUN WAY! 439

* Inventory view (when the player is viewing their item inventory)
* Spell casting view (when the player wants to cast a spell)

* Weapon switching view (when the player wants to switch what weapon they are currently
using)

e Help view (when the player is viewing the game help)

¢ Talking view (when the player is talking to a character)

e Store view (when the player is looking at the items they can purchase in a store)
¢ Game end view (when the player has either died or won the game)

showHelp() is called to show game help. showMapView() is called to show the normal map
view. showGameEnd() is called to show the game end view (passing it the value “won” or “died”
to indicate which view to show). displayInventory() is called to show the player’s inventory.

All of these views make use of the showSecondaryView() function. This function accepts
two parameters: the first is the markup to display, and the second is which view to display.
Using these parameters, it populates the appropriate <div> and shows it, and also sets the
currentView member of gameState appropriately.

You might be wondering why there is no showSpellCasting() or showheaponSwitching()
function, or others that change the view. The reason is that the ones that have functions here
are essentially information-only views; no functionality is hidden within them. When you view
inventory, you cannot select an item to use, for instance. However, spell casting requires two
things: showing the spell casting view, and handling the casting of a spell. Because of this,
you'll find a castSpell() function elsewhere that does what any of these would do—that is,
show the spell casting view—but it also handles when the user picks a spell to cast. We'll see
how that works soon.

CastSpell.js

Well, since I went and just brought it up, let’s take a quick look at castSpell() right now! You
can refer to the source file downloaded from the Apress website.

As before, you can see the overall structure repeated in terms of the branching logic based
on whether or not x