
Chapter

Business Tier
Design

Consideration

Business Tier Design
Considerations and Bad

Practices

Topics in This Chapter

• Business Tier Design Considerations

• Business and Integration Tiers Bad Practices

CJP2.book Page 44 Friday, May 16, 2003 10:58 AM

45

Chapter

Business Tier
Design

Considerations

CJP2.book Page 45 Friday, May 16, 2003 10:58 AM

 46 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

Business Tier Design Considerations

When you apply the business tier and integration tier patterns in this book, you’ll
need to know about related design issues, which we cover in this chapter. These
issues cover a variety of topics, and can affect many aspects of a system.

The discussions in this chapter simply describe each issue as a design issue
that you should consider when implementing systems based on the J2EE pattern
catalog.

Using Session Beans
Session beans are distributed business components with the following character-
istics, per the EJB specification:

• A session bean is dedicated to a single client or user.

• A session bean lives only for the duration of the client's session.

• A session bean does not survive container crashes.

• A session bean is not a persistent object.

• A session bean can time out.

• A session bean can be transaction aware.

• A session bean can be used to model stateful or stateless conversations
between the client and the business tier-components.

Note: In this section, we use the term workflow in the context of EJB to represent
the logic associated with the enterprise beans communication. For example, work-
flow encompasses how session bean A calls session bean B, then entity bean C.

Session Bean—Stateless Versus Stateful
Session beans come in two flavors—stateless and stateful. A stateless session

bean does not hold any conversational state. Hence, once a client’s method invo-
cation on a stateless session beans is completed, the container is free to reuse that
session bean instance for another client. This allows the container to maintain a
pool of session beans and to reuse session beans among multiple clients. The con-
tainer pools stateless session beans so that it can reuse them more efficiently by
sharing them with multiple clients. The container returns a stateless session bean

CJP2.book Page 46 Friday, May 16, 2003 10:58 AM

Business Tier Design Considerations 47

Business Tier
Design

Considerations

to the pool after the client completes its invocation. The container may allocate a
different instance from the pool to subsequent client invocations.

A stateful session bean holds conversational state. A stateful session bean may
be pooled, but since the session bean is holding state on behalf of a client, the
bean cannot simultaneously be shared with and handle requests from another cli-
ent.

The container does not pool stateful session beans in the same manner as it
pools stateless session beans because stateful session beans hold client session
state. Stateful session beans are allocated to a client and remain allocated to the
client as long as the client session is active. Thus, stateful session beans need
more resource overhead than stateless session beans, for the added advantage of
maintaining conversational state.

Many designers believe that using stateless session beans is a more viable ses-
sion bean design strategy for scalable systems. This belief stems from building
distributed object systems with older technologies, because without an inherent
infrastructure to manage component life cycle, such systems rapidly lost scalabil-
ity characteristics as resource demands increased. Scalability loss was due to the
lack of component life cycle, causing the service to continue to consume
resources as the number of clients and objects increased.

An EJB container manages the life cycle of enterprise beans and is responsible
for monitoring system resources to best manage enterprise bean instances. The
container manages a pool of enterprise beans and brings enterprise beans in and
out of memory (called activation and passivation, respectively) to optimize
invocation and resource consumption.

Scalability problems are typically due to the misapplication of stateful and
stateless session beans. The choice of using stateful or stateless session beans
must depend upon the business process being implemented. A business process
that needs only one method call to complete the service is a non-conversational
business process. Such processes are suitably implemented using a stateless ses-
sion bean. A business process that needs multiple method calls to complete the
service is a conversational business process. It is suitably implemented using a
stateful session bean.

However, some designers choose stateless session beans, hoping to increase
scalability, and they may wrongly decide to model all business processes as state-
less session beans. When using stateless session beans for conversational busi-
ness processes, every method invocation requires the state to be passed by the
client to the bean, reconstructed at the business tier, or retrieved from a persistent
store. These techniques could result in reduced scalability due to the associated
overheads in network traffic, reconstruction time, or access time respectively.

CJP2.book Page 47 Friday, May 16, 2003 10:58 AM

 48 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

Storing State on the Business Tier
Some design considerations for storing state on the Web server are discussed in
“Session State in the Presentation Tier” on page 21. Here we continue that
discussion to explore when it is appropriate to store state in a stateful session
bean instead of in an HttpSession.

One of the considerations is to determine what types of clients access the
business services in your system. If the architecture is solely a Web-based appli-
cation, where all the clients come through a Web server either via a servlet or a
JSP, then conversational state may be maintained in an HttpSession in the web tier.
This scenario is shown in Figure 3.1.

Figure 3.1 Storing State in HttpSession

On the other hand, if your application supports various types of clients,
including Web clients, Java applications, other applications, and even other enter-
prise beans, then conversational state can be maintained in the EJB layer using
stateful session beans. This is shown in Figure 3.2.

Tier
Client
Tier Tier

Resource
Tier

Database
Client

JSP/
Servlets

Enterprise
Beans

State

Tier
Client
Tier

Resource
Tier

Database
Client

JSP/
Servlets

State

CJP2.book Page 48 Friday, May 16, 2003 10:58 AM

Business Tier Design Considerations 49

Business Tier
Design

Considerations

Figure 3.2 Storing State in Session Beans

We have presented some basic discussion on the subject of state management
here and in the previous chapter (see “Session State on the Client” on page 20). A
full-scale discussion is outside the scope of this book, since the problem is
multi-dimensional and depends very much on the deployment environment,
including:

• Hardware

• Traffic management

• Clustering of Web container

• Clustering of EJB container

• Server affinity

• Session replication

• Session persistence

We touch on this issue because it is one that should be considered during devel-
opment and deployment.

Using Entity Beans
Using entity beans appropriately is a question of design heuristics, experience,
need, and technology. Entity beans are best suited as coarse-grained business
components. Entity beans are distributed objects and have the following charac-
teristics, per the EJB specification:

• Entity beans provide an object view of persistent data.

• Entity beans are transactional.

Tier Tier
Resource

Tier

Database

Client

JSP/
Servlets

Enterprise
Beans

State

CJP2.book Page 49 Friday, May 16, 2003 10:58 AM

 50 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

• Entity beans are multiuser.

• Entity beans are long-lived.

• Entity beans survive container crashes. Such crashes are typically trans-
parent to the clients.

Summarizing this definition, the appropriate use of an entity bean is as a dis-
tributed, shared, transactional, and persistent object. In addition, EJB containers
provide other infrastructure necessary to support such system qualities as scal-
ability, security, performance, clustering, and so forth. All together, this makes
for a very reliable and robust platform to implement and deploy applications with
distributed business components.

Entity Bean Primary Keys
Entity beans are uniquely identified by their primary keys. A primary key can be
a simple key, made up of a single attribute, or it can be a composite key, made up
of a group of attributes from the entity bean. For entity beans with a single-field
primary key, where the primary key is a primitive type, it is possible to imple-
ment the entity bean without defining an explicit primary key class. The deployer
can specify the primary key field in the deployment descriptor for the entity bean.
However, when the primary key is a composite key, a separate class for the pri-
mary key must be specified. This class must be a simple Java class that imple-
ments the serializable interface with the attributes that define the composite key
for the entity bean. The attribute names and types in the primary key class must
match those in the entity bean, and also must be declared public in both the bean
implementation class and primary key class.

As a suggested best practice, the primary key class must implement the
optional java.lang.Object methods, such as equals and hashCode.

• Override the equals() method to properly evaluate the equality of two pri-
mary keys by comparing values for each part of the composite key.

• Override the Object.hashCode() method to return a unique number repre-
senting the hash code for the primary key instance. Ensure that the hash
code is indeed unique when you use your primary key attribute values to
compute the hash code.

Business Logic in Entity Beans
A common question in entity bean design is what kind of business logic it should
contain. Some designers feel that entity beans should contain only persistence
logic and simple methods to get and set data values. They feel that entity beans

CJP2.book Page 50 Friday, May 16, 2003 10:58 AM

Business Tier Design Considerations 51

Business Tier
Design

Considerations

should not contain business logic, which is often misunderstood to mean that only
code related to getting and setting data must be included in the entity bean.

Business logic generally includes any logic associated with providing some
service. For this discussion, consider business logic to include all logic related to
processing, workflow, business rules, data, and so forth. The following is a list of
sample questions to explore the possible results of adding business logic into an
entity:

• Will the business logic introduce entity-entity relationships?

• Will the entity bean become responsible for managing workflow of user
interaction?

• Will the entity bean take on the responsibilities that should belong in
some other business component?

A “yes” answer to any of these questions helps identify whether introducing
business logic into the entity bean can have an adverse impact, especially if you
use remote entity beans. It is desirable to investigate the design to avoid
inter-entity-bean dependencies as much as possible, since such dependences cre-
ate overheads that may impede overall application performance.

In general, the entity bean should contain business logic that is self-contained
to manage its data and its dependent objects’ data. Thus, it may be necessary to
identify, extract, and move business logic that introduces
entity-bean-to-entity-bean interaction from the entity bean into a session bean by
applying the Session Façade pattern. The Composite Entity (391) pattern and some
of the refactorings discuss the issues related to entity bean design.

If any workflow associated with multiple entity beans is identified, then you
can implement the workflow in a session bean instead of in an entity bean. Use a
Session Façade (341) or Application Service (357).

• See “Merge Session Beans” on page 96.

• See “Reduce Inter-Entity Bean Communication” on page 98.

• See “Move Business Logic to Session” on page 100.

• See Session Façade (341)

• See Business Object (374)

• See Composite Entity (391)

• See Application Service (357)

CJP2.book Page 51 Friday, May 16, 2003 10:58 AM

 52 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

For bean-managed persistence in entity beans, data access code is best imple-
mented outside entity beans.

• See “Separate Data Access Code” on page 102.

• See Data Access Object (462).

Caching Enterprise Bean Remote References and
Handles
When clients use an enterprise bean, they might need to cache some reference to
an enterprise bean for future use. You will encounter this when using business
delegates (see Business Delegate (302)), where a delegate connects to a session
bean and invokes the necessary business methods on the bean on behalf of the cli-
ent.

When the client uses the business delegate for the first time, the delegate
needs to perform a lookup using the EJB Home object to obtain a remote refer-
ence to the session bean. For subsequent requests, the business delegate can avoid
lookups by caching a remote reference or its handle as necessary.

The EJB Home handle can also be cached to avoid an additional Java Naming
and Directory Interface (JNDI) lookup for the enterprise bean home. For more
details on using an EJB Handle or the EJB Home Handle, please refer to the cur-
rent EJB specification.

CJP2.book Page 52 Friday, May 16, 2003 10:58 AM

Business and Integration Tiers Bad Practices 53

Business Tier
Design

Considerations

Business and Integration Tiers Bad
Practices

Mapping the Object Model Directly to the Entity
Bean Model

Problem Summary
One of the common practices in designing an EJB application is to map the object
model directly into entity beans; that is, each class in the object model is trans-
formed into an entity bean. This results in a large number of fine-grained entity
beans.

The container and network overhead increases as the number of enterprise
beans increases. Such mapping also transforms object relationships into
entity-bean-to-entity-bean relationships. This is best avoided, since
entity-bean-to-entity-bean relationships introduce severe performance implica-
tions for remote entity beans.

Solution Reference
Identify the parent-dependent object relationships in the object model and design
them as coarse-grained entity beans. This results in fewer entity beans, where
each entity bean composes a group of related objects from the object model.

• Refactoring See “Reduce Inter-Entity Bean Communication” on page 98.

• Pattern See Composite Entity (391)

Consolidate related workflow operations into session beans to provide a uni-
form coarse-grained service access layer.

• Refactoring See “Merge Session Beans” on page 96.

• Pattern See Session Façade (341)

Mapping the Relational Model Directly to the
Entity Bean Model

Problem Summary
When designing an EJB model, it is bad practice to model each row in a table as
an entity bean. While entity beans are best designed as coarse-grained objects,

CJP2.book Page 53 Friday, May 16, 2003 10:58 AM

 54 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

this mapping results in a large number of fine-grained entity beans, and it affects
scalability.

Such mapping also implements inter-table relationships that is, primary
key/foreign key relationships) as entity-bean-to-entity-bean relationships.

Solution Reference
Design your enterprise bean application using an object-oriented approach
instead of relying on the preexisting relational database design to produce the
EJB model.

• Bad Practice See solution reference for “Mapping the Object Model
Directly to the Entity Bean Model” on page 53.

Avoid inter-entity relationships by designing coarse-grained business objects
by identifying parent-dependent objects.

• Refactoring See “Reduce Inter-Entity Bean Communication” on
page 98.

• Refactoring See “Move Business Logic to Session” on page 100.

• Pattern See Composite Entity (391)

Mapping Each Use Case to a Session Bean

Problem Summary
Some designers implement each use case with its own unique session bean. This
creates fine-grained controllers responsible for servicing only one type of interac-
tion. The drawback of this approach is that it can result in a large number of ses-
sion beans and significantly increase the complexity of the application.

Solution Reference
Apply the Session Façade pattern to aggregate a group of the related interactions
into a single session bean. This results in fewer session beans for the application,
and leverages the advantages of applying the Session Façade pattern.

• Refactoring See “Merge Session Beans” on page 96.

• Pattern See Session Façade (341)

CJP2.book Page 54 Friday, May 16, 2003 10:58 AM

Business and Integration Tiers Bad Practices 55

Business Tier
Design

Considerations

Exposing All Enterprise Bean Attributes via
Getter/Setter Methods

Problem Summary
Exposing each enterprise bean attribute using getter/setter methods is a bad prac-
tice. This forces the client to invoke numerous fine-grained remote invocations
and creates the potential to introduce a significant amount of network chattiness
across the tiers. Each method call is potentially remote and carries with it a cer-
tain network overhead that impacts performance and scalability.

Solution Reference
Use a value object to transfer aggregate data to and from the client instead of
exposing the getters and setters for each attribute.

• Pattern See Transfer Object (415).

Embedding Service Lookup in Clients

Problem Summary
Clients and presentation-tier objects frequently need to look up the enterprise
beans. In an EJB environment, the container uses JNDI to provide this service.

Putting the burden of locating services on the application client can introduce
a proliferation of lookup code in the application code. Any change to the lookup
code propagates to all clients that look up the services. Also, embedding lookup
code in clients exposes them to the complexity of the underlying implementation
and introduces dependency on the lookup code.

Solution Reference
Encapsulate implementation details of the lookup mechanisms using a Service
Locator (315).

• Pattern See Service Locator (315)

Encapsulate the implementation details of business tier-components, such as
session and entity beans, using Business Delegate (302). This simplifies client
code since they no longer deal with enterprise beans and services. Business Dele-
gate (302) can in turn use the Service Locator (315).

• Refactoring See “Introduce Business Delegate” on page 94.

• Pattern See Business Delegate (302).

CJP2.book Page 55 Friday, May 16, 2003 10:58 AM

 56 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

Using Entity Beans as Read-Only Objects

Problem Summary
Any entity bean method is subject to transaction semantics based on its transac-
tion isolation levels specified in the deployment descriptor. Using an entity bean
as a read-only object simply wastes expensive resources and results in unneces-
sary update transactions to the persistent store. This is due to the invocation of the
ejbStore() methods by the container during the entity bean’s life cycle. Since the
container has no way of knowing if the data was changed during a method invo-
cation, it must assume that it has and invoke the ejbStore() operation. Thus, the
container makes no distinction between read-only and read-write entity beans.
However, some containers may provide read-only entity beans, but these are ven-
dor proprietary implementations.

Solution Reference
Encapsulate all access to the data source using Data Access Object (462) pattern.
This provides a centralized layer of data access code and also simplifies entity
bean code.

• Pattern See Data Access Object (462).

Implement access to read-only functionality using a session bean, typically as
a Session Façade that uses a DAO.

• Pattern See Session Façade (341)

You can implement Value List Handler (444) to obtain a list of Transfer
Objects (415).

• Pattern See Value List Handler (444).

You can implement Transfer Objects (415) to obtain a complex data model
from the business tier.

• Pattern See Transfer Object Assembler (433).

Using Entity Beans as Fine-Grained Objects

Problem Summary
Entity beans are meant to represent coarse-grained transactional persistent busi-
ness components. Using a remote entity bean to represent fine-grained objects
increases the overall network communication and container overhead. This
impacts application performance and scalability.

CJP2.book Page 56 Friday, May 16, 2003 10:58 AM

Business and Integration Tiers Bad Practices 57

Business Tier
Design

Considerations

Think of a fine-grained object as an object that has little meaning without its
association to another object (typically a coarse-grained parent object). For exam-
ple, an item object can be thought of as a fined-grained object because it has little
value until it is associated with an order object. In this example, the order object
is the coarse-grained object and the item object is the fine-grained (dependent)
object.

Solution Reference
When designing enterprise beans based on a preexisting RDBMS schema,

• Bad Practice See “Mapping the Relational Model Directly to the Entity
Bean Model” on page 53.

When designing enterprise beans using an object model,

• Bad Practice See “Mapping the Object Model Directly to the Entity Bean
Model” on page 53.

Design coarse-grained entity beans and session beans. Apply the following
patterns and refactorings that promote coarse-grained enterprise beans design.

• Pattern See Composite Entity (391).

• Pattern See Session Façade (341).

• Refactoring See “Reduce Inter-Entity Bean Communication” on page 98.

• Refactoring See “Move Business Logic to Session” on page 100.

• Refactoring See “Business Logic in Entity Beans” on page 50.

• Refactoring See “Merge Session Beans” on page 96.

Storing Entire Entity Bean-Dependent Object
Graph

Problem Summary
When a complex tree structure of dependent objects is used in an entity bean, per-
formance can degrade rapidly when loading and storing an entire tree of depen-
dent objects. When the container invokes the entity bean’s ejbLoad() method, either
for the initial load or for reloads to synchronize with the persistent store, loading
the entire tree of dependent objects can prove wasteful. Similarly, when the con-
tainer invokes the entity bean’s ejbStore() method at any time, storing the entire
tree of objects can be quite expensive and unnecessary.

CJP2.book Page 57 Friday, May 16, 2003 10:58 AM

 58 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

Solution Reference
Identify the dependent objects that have changed since the previous store opera-
tion and store only those objects to the persistent store.

• Pattern See Composite Entity (391) and Store Optimization (Dirty
Marker) Strategy (397).

Implement a strategy to load only data that is most accessed and required.
Load the remaining dependent objects on demand.

• Pattern See Composite Entity (391) and Lazy Loading Strategy on
page 396.

By applying these strategies, it is possible to prevent loading and storing an entire
tree of dependent objects.

Exposing EJB-related Exceptions to Non-EJB
Clients

Problem Summary
Enterprise beans can throw business application exceptions to clients. When an
application throws an application exception, the container simply throws the
exception to the client. This allows the client to gracefully handle the exception
and possibly take another action. It is reasonable to expect the application devel-
oper to understand and handle such application-level exceptions.

However, despite employing such good programming practices as designing
and using application exceptions, the clients may still receive EJB-related excep-
tions, such as a java.rmi.RemoteException. This can happen if the enterprise bean or
the container encounters a system failure related to the enterprise bean.

The burden is on the application developer, who may not even be aware of or
knowledgeable about EJB exceptions and semantics, to understand the imple-
mentation details of the non-application exceptions that may be thrown by busi-
ness tier-components. In addition, non-application exceptions may not provide
relevant information to help the user rectify the problem.

Solution Reference
Decouple the clients from the business tier and hide the business-tier implemen-
tation details from clients, using business delegates. Business delegates intercept
all service exceptions and may throw an application exception. Business dele-
gates are plain Java objects that are local to the client. Typically, business dele-
gates are developed by the EJB developers and provided to the client developers.

CJP2.book Page 58 Friday, May 16, 2003 10:58 AM

Business and Integration Tiers Bad Practices 59

Business Tier
Design

Considerations

• Refactoring See “Introduce Business Delegate” on page 94.

• Pattern See Business Delegate (302).

Using Entity Bean Finder Methods to Return a
Large Results Set

Problem Summary
Frequently, applications require the ability to search and obtain a list of values.
Using an EJB finder method to look up a large collection of entity beans will
return a collection of remote references. Consequently, the client has to invoke a
method on each remote reference to get the data. This is a remote call and can
become very expensive, especially impacting performance, when the caller
invokes remote calls on each entity bean reference in the collection.

Solution Reference
Implement queries using session beans and DAOs to obtain a list of Transfer
Objects (415) instead of remote references. Use a DAO to perform searches
instead of EJB finder methods.

• Pattern See Value List Handler (444).

• Pattern See “Data Access Object” on page 462.

Client Aggregates Data from Business
Components

Problem Summary
The application clients (in the client or presentation tier) typically need the data
model for the application from the business tier. Since the model is implemented
by business components—such as entity beans, session beans, and arbitrary
objects in the business tier—the client must locate, interact with, and extract the
necessary data from various business components to construct the data model.

These client actions introduce network overhead due to multiple invocations
from the client into the business tier. In addition, the client becomes tightly cou-
pled with the application model. In applications where there are various types of
clients, this coupling problem multiplies: A change to the model requires changes
to all clients that contain code to interact with those model elements comprised of
business components.

CJP2.book Page 59 Friday, May 16, 2003 10:58 AM

 60 Chapter 3 Business Tier Design Considerations and Bad Practices

Business Tier
Design

Considerations

Solution Reference
Decouple the client from model construction. Implement a business-tier compo-
nent that is responsible for the construction of the required application model.

• Pattern See Transfer Object Assembler (433).

Using Enterprise Beans for Long-Lived
Transactions

Problem Summary
Enterprise beans (pre-EJB 2.0) are suitable for synchronous processing. Further-
more, enterprise beans do well if each method implemented in a bean produces an
outcome within a predictable and acceptable time period.

If an enterprise bean method takes a significant amount of time to process a
client request, or if it blocks while processing, this also blocks the container
resources, such as memory and threads, used by the bean. This can severely
impact performance and deplete system resources.

An enterprise bean transaction that takes a long time to complete potentially
locks out resources from other enterprise bean instances that need those
resources, resulting in performance bottlenecks.

Solution Reference
Implement asynchronous processing service using a message-oriented middle-
ware (MOM) with a Java Message Service (JMS) API to facilitate long-lived
transactions.

• Pattern See “Service Activator” on page 496.

Stateless Session Bean Reconstructs
Conversational State for Each Invocation

Problem Summary
Some designers choose stateless session beans to increase scalability. They may
inadvertently decide to model all business processes as stateless session beans
even though the session beans require conversational state. But, since the session
bean is stateless, it must rebuild conversational state in every method invocation.
The state may have to be rebuilt by retrieving data from a database. This com-

CJP2.book Page 60 Friday, May 16, 2003 10:58 AM

Business and Integration Tiers Bad Practices 61

Business Tier
Design

Considerations

pletely defeats the purpose of using stateless session beans to improve perfor-
mance and scalability and can severely degrade performance.

Solution Reference
Analyze the interaction model before choosing the stateless session bean mode.
The choice of stateful or stateless session bean depends on the need for maintain-
ing conversational state across method invocations in stateful session bean versus
the cost of rebuilding the state during each invocation in stateless session bean.

• Pattern See Transfer Object Assembler (433), Stateless Session Façade
Strategy on page 345, and Stateful Session Façade Strategy on page 345.

• Design See “Session Bean—Stateless Versus Stateful” on page 46 and
“Storing State on the Business Tier” on page 48.

CJP2.book Page 61 Friday, May 16, 2003 10:58 AM

