

Chapter

URL A

CTIONS

Topics in This Chapter

• Overview

• The <c:import> Action

• The <c:redirect> Action

• The <c:url> Action

• The <c:param> Action

• Accessing External Resources

• Accessing Resources in Foreign Contexts

• Redirecting a Response

chapter5-urlActions.fm Page 198 Tuesday, October 8, 2002 12:29 PM

199

Chapter

5

If you’ve developed Web applications with JavaServer Pages (JSP), you have proba-
bly found many uses for <jsp:include> and <jsp:forward>. The former includes the
contents of a resource and the latter forwards control to a Web component, such as a
servlet or another JSP page. On the other hand, you may have found that those
actions have limited capabilities; for example, the URLs that you specify for those
actions must be relative URLs, so you cannot use them to access URLs outside your
Web application. JSTL provides a set of URL actions that augment the capabilities
provided by <jsp:include> and <jsp:forward>; those actions are the subject of this
chapter.

Before we discuss the JSTL URL actions, let’s review some Web application basics
and define a few terms used throughout this chapter. Java-based Web applications
are stored in a directory on your filesystem; for example, Figure 5–1 illustrates a Web
application that resides under the

C:\core-jstl\webapp

 directory.

Figure 5–1

A Simple Java-Based Web Application

chapter5-urlActions.fm Page 199 Monday, October 21, 2002 8:12 AM

Chapter 5

■

URL Actions

200

Java-based Web applications

reside

 in a

directory

, but they are

defined

 by a

context

; for example, the Web application depicted in Figure 5–1 could be defined in
Tomcat’s configuration file with a

Context

 element, like this:

1

<

Context path

="/core-jstl"

 docBase="C:/core-jstl/webapp"/>

The

path

 attribute of the

Context

 element defines a URL that you use to
access a Web application that resides in a directory specified by the

docBase

attribute; for example, to access the Web application shown in Figure 5–1 you would
use the URL

$SCHEME$HOSTNAME/core-jstl

, where

$SCHEME$HOSTNAME

represents a scheme and a host name. For example, if the scheme is

http://

 and
the host name is

localhost

, the URL for the Web application defined above
would be

http://localhost/core-jstl

.

As websites grow, it is not uncommon for them to contain more than one Web
application. From the perspective of a single Web application, the other Web
applications in the same website are referred to as

foreign contexts

. For example, if
your website has a registration Web application and a shopping application, the
registration application is a foreign context relative to the shopping application, and
vice versa.

When you access resources with <jsp:include>, you can specify either a

context-relative path

 or a

page-relative path

; the former is relative to the top-level
directory in a context (a Web application), and the latter is relative to the JSP page in
which the <jsp:include> action resides.

Context-relative paths always start with a forward slash, whereas page-relative
paths do not. For example, for the application shown in Figure 5–1, you can:

• Access

test_2.jsp

 from

test_1.jsp

• with a context-relative path, like this:

<jsp:include page='

/jsp

/test_2.jsp'/>

• or with a page-relative path, like this:

<jsp:include page='

jsp

/test_2.jsp'/>

.

• Access

test_1.jsp

 from

test_2.jsp

• with a context-relative path, like this:

<jsp:include page='

/test_1

.jsp'/>

• or with a page-relative path, like this:

<jsp:include page='

../test_1

.jsp'/>

.

1. Different JSP containers use different terms for context paths; for example, Resin calls
them web-app ids.

chapter5-urlActions.fm Page 200 Tuesday, October 8, 2002 12:29 PM

5.1 Overview

201

Now that we have established some common vocabulary, let’s take a look at the
JSTL URL actions.

5.1 Overview

JSTL provides four URL actions that let you do the following:

• Import page-relative resources, context-relative resources, resources
that reside in a foreign context, and external resources

• Redirect HTTP responses

• Create URLs with automatic URL rewriting and encoded request
parameters

The JSTL URL actions are listed in Table 5.1.

The actions listed in Table 5.1 are discussed—in the order in which they are
listed—in the following sections. After we discuss those actions, we examine how
they can be used in several real-world scenarios, such as scraping book information
from Amazon.com, importing JSP pages from foreign contexts, and redirecting
HTTP responses for logging access to external resources.

5.2 The <c:import> Action

The <jsp:include> action lets you encapsulate functionality in one JSP page and
include it in another; for example, you could include company headers and footers,
like this:

Table 5.1

JSTL URL Actions

Action Description

<c:import> Imports the content of a URL-based resource

<c:redirect> Redirects an HTTP response

<c:url> Creates a URL, applying URL rewriting as necessary

<c:param> Encodes a request parameter for <c:import>, <c:redirect>, or <c:url>

chapter5-urlActions.fm Page 201 Tuesday, October 8, 2002 12:29 PM

Chapter 5

■

URL Actions

202

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

 ...

 <body>

 <

jsp:include

 page='/WEB-INF/jsp/company/companyHeader.jsp'/>

 <%-- Page content goes here--%>

 <

jsp:include

 page='/WEB-INF/jsp/company/companyFooter.jsp'/>

 </body>

</html>

The preceding JSP page includes JSP files specified with context-relative URLs
that reside in a

/WEB-INF/jsp/company

 directory.

2

 You can also specify request
parameters for included files with the <jsp:param> action, like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

 ...

 <body>

 <

jsp:include

 page='/WEB-INF/jsp/company/companyHeader.jsp'>

 <

jsp:param

 name='user'

 value='<%=session.getAttribute("userName")%>'/>

 </jsp:include>

 <%-- Page content goes here--%>

 <jsp:include page='/WEB-INF/jsp/company/companyFooter.jsp'/>

 </body>

</html>

In the preceding code fragment,

companyHeader.jsp

 is passed a request
parameter named

user

 that references a user name stored in session scope.

As handy as the <jsp:include> action is, its capabilities are limited; for example, it
cannot import external resources or resources stored in foreign contexts. The JSTL

2. Files stored under

WEB-INF

 cannot be directly accessed by users.

chapter5-urlActions.fm Page 202 Tuesday, October 8, 2002 12:29 PM

5.2 The <c:import> Action

203

<c:import> action can do all those things and more. Table 5.2 lists the features
supported by <jsp:include> and <c:import>.

You can use <c:import> instead of <jsp:include> to import resources in the same
Web application; for example, you could import company headers and footers like
this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 ...
 <body>
 <

c:import

 url='/WEB-INF/jsp/company/companyHeader.jsp'/>

 <%-- Page content goes here--%>

 <

c:import

 url='/WEB-INF/jsp/company/companyFooter.jsp'/>
 </body>
</html>

JSTL also provides a <c:param> action that you can use just like <jsp:param>; for
example, the code fragment listed on page 202 could be rewritten like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 ...
 <body>
 <

c:import

 url='/WEB-INF/jsp/company/companyHeader.jsp'>
 <

c:param

 name='user'

Table 5.2

<jsp:include> vs. <c:import>

Feature <jsp:include> <c:import>

Access resources in the same Web application Yes Yes

Access resources in a foreign contexta

a. This feature is not supported by all JSP containers.

No Yes

Access external resources No Yes

Provide a performance boost option No Yes

Store imported content in a scoped variable No Yes

Specify a character encoding for the imported resource No Yes

Support the JSTL Expression Language No Yes

chapter5-urlActions.fm Page 203 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions204

 value='${sessionScope.userName}'/>

 </c:import>

 <%-- Page content goes here--%>

 <c:import url='/WEB-INF/jsp/company/companyFooter.jsp'/>

 </body>

</html>

The <c:import> action applies URL rewriting as necessary to maintain sessions if
cookies are disabled on the client. The <c:import> action has two syntaxes; here’s one
of them:3

<c:import url [context] [charEncoding] [var] [scope]>
<c:param> actions

</c:import>

The url attribute is similar to the <jsp:include> action’s page attribute—both
attributes specify a URL, either context-relative or page-relative—whose content is
included in the JSP page in which the respective actions reside. But the URL
specified with the <c:import> url attribute can also represent an external resource
or a resource that resides in a foreign context.

To access an external resource, you simply specify an absolute URL for the url
attribute. To access a resource in a foreign context, you must specify a value for the
context attribute that represents a context path for the foreign context in
conjunction with the url attribute, which represents a context-relative path to the
resource. For example, from another Web application in the same website, you could
import test_2.jsp shown in Figure 5–1 on page 199 like this:

<c:import url='/jsp/test_2.jsp' context='/core-jstl'/>

See “Accessing External Resources” on page 210 for an example of importing
external resources and “Accessing Resources in Foreign Contexts” on page 215 for
an example of importing resources from a foreign context.

The charEncoding attribute specifies a character encoding, such as UTF-8,
that <c:import> uses to decode characters that it imports;4 for example, you could
specify a character encoding of Shift_JIS to import a URL whose content is in
Japanese like this:

3. Items in brackets are optional. See “<c:import>” on page 486 for a more complete descrip-
tion of <c:import> syntax.

4. See “Unicode and Charsets” on page 260 for more information about character encodings.

chapter5-urlActions.fm Page 204 Tuesday, October 8, 2002 12:29 PM

5.2 The <c:import> Action 205

<c:import url='http://www.tcvb.or.jp/jp/index-j.htm'
 charEncoding='Shift_JIS'/>

By default, the <c:import> action writes the content of the URL that it imports to
the current JspWriter; however, if you specify the var attribute, <c:import> will
create a scoped variable whose name is specified with that attribute. That scoped
variable references a string that contains the content that <c:import> imports. By
default, <c:import> stores that scoped variable in page scope, but you can specify the
scope attribute to store it in page, request, session, or application scope.

You can also use <c:import> with this syntax:

<c:import url [context] [charEncoding] varReader>
body content that uses the varReader scoped variable:
<c:param> actions not allowed

</c:import>

The preceding syntax is the same as the first syntax, except that the var and
scope attributes are replaced by a varReader attribute and <c:param> actions
are disallowed in the body of the <c:import> action. The varReader attribute
specifies the name of a reader that references the imported content. That reader is
only accessible in the body of the <c:import> action, and because it must be available
immediately after the <c:import> start tag, <c:param> actions are not allowed in the
body of the <c:import> action. This syntax is provided for efficiency because the
imported content is not stored in a string but instead is accessed directly with a
reader. Figure 5–2 shows a JSP page that uses <c:import> with the preceding syntax
to display the content of a URL.

Figure 5–2 Using <c:import> with a Reader

The JSP page shown in Figure 5–2 uses a custom action nested in the body of a
<c:import> action. That custom action uses a reader created by <c:import> to
directly access the content of a URL. That JSP page is listed in Listing 5.1.

The preceding JSP page uses <c:import> to read the content of another JSP page
named someContent.jsp, which resides in the same directory as the preceding

chapter5-urlActions.fm Page 205 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions206

JSP page. The varReader attribute is specified so that <c:import> will create
a reader and store it in page scope. The custom action—
<core-jstl:displayUrlContent>—uses the reader to display the imported content.
Notice that the custom action has a reader attribute that specifies the name of the
reader. That attribute’s value must be the same as the value specified for the
enclosing <c:import> action’s varReader attribute.

The JSP page imported by the preceding JSP page is listed in Listing 5.2.

The tag handler for the <core-jstl:displayUrlContent> custom action is listed in
Listing 5.3.

The preceding tag handler’s doStartTag method invokes the
PageContext.findAttribute method to locate the reader created by an
enclosing <c:import> action to read each character and write it to the current
JspWriter.

Note: Unlike other JSTL actions, such as the iteration, SQL, and
internationalization actions, the URL actions do not expose any classes or interfaces.

Listing 5.1 Using a Custom Action That Uses the Optional Reader
Created by <c:import>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>
 Using the Reader Created by <c:import>
 </title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
 <%@ taglib uri='WEB-INF/core-jstl.tld' prefix='core-jstl' %>

 <c:import url='someContent.jsp' varReader='reader'>
 <core-jstl:displayUrlContent reader='reader'/>
 </c:import>
 </body>
</html>

Listing 5.2 someContent.jsp

CONTENT

chapter5-urlActions.fm Page 206 Tuesday, October 8, 2002 12:29 PM

5.2 The <c:import> Action 207

If the <c:import> tag handler’s class had been exposed, the preceding tag handler
could check to make sure that it had an <c:import> ancestor action and could also
obtain a reference to the reader that the enclosing <c:import> action created.
However, because the URL actions do not expose any classes or interfaces, you must
explicitly pass the tag handler the name of the reader created by its enclosing
<c:import> action and the tag handler must also check to make sure that the reader
is not null.

Listing 5.3 WEB-INF/classes/tags/DisplayUrlAction.java

package tags;

import java.io.Reader;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.*;

public class DisplayUrlAction extends TagSupport {
 private String readerName;

 public void setReader(String readerName) {
 this.readerName = readerName;
 }
 public int doStartTag() throws JspException {
 int character;

 Reader reader = (Reader)
 pageContext.findAttribute(readerName);

 if(reader == null) {
 throw new JspException("You can only use this action " +
 "in the body of a " +
 "<c:import> " +
 "action that exposes a reader ");
 }
 try {
 while((character = reader.read()) != -1)
 pageContext.getOut().print((char)character);
 }
 catch(java.io.IOException ex) {
 throw new JspException(ex.getMessage());
 }
 return SKIP_BODY;
 }
}

chapter5-urlActions.fm Page 207 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions208

5.3 The <c:redirect> Action

The <c:redirect> action sends an HTTP redirect response to the client and aborts
the processing of the JSP page in which the action resides. You can use <c:redirect>
to redirect to an external resource or a resource in a foreign context with the follow-
ing syntax:5

<c:redirect url [context]/>

As is the case for <c:import>, if you specify the context attribute for
<c:redirect>, you must also specify a context-relative URL with the url attribute
that points to a resource contained in that foreign context. You can also use
<c:redirect> with <c:param> actions with this syntax:

<c:redirect url [context]>
<c:param> actions

</c:redirect>

Like <c:import>, the <c:redirect> action applies URL rewriting as necessary. See
“Redirecting a Response” on page 225 for an example of how you can use
<c:redirect>.

5.4 The <c:url> Action

The <c:url> action processes a URL, applying URL rewriting—for relative URLs
only—as necessary. The <c:url> action has two syntaxes; here’s one of them:6

<c:url value [context] [var] [scope]/>

The mandatory value attribute specifies the URL that’s processed by the <c:url>
action. The context attribute lets you specify a foreign context. Like <c:import>
and <c:redirect>, if you specify the context attribute for <c:url>, you must also
specify a context-relative URL, with the value attribute, that points to a resource in
that foreign context. By default, <c:url> sends the processed URL to the current

5. Items in brackets are optional. See “<c:redirect>” on page 489 for a more complete
description of <c:redirect> syntax.

6. Items in brackets are optional. See “<c:url>” on page 490 for a more complete description
of <c:url> syntax.

chapter5-urlActions.fm Page 208 Tuesday, October 8, 2002 12:29 PM

5.4 The <c:url> Action 209

JspWriter, but you can store that URL in a scoped variable instead if you specify
the var attribute and, optionally, the scope attribute.

Like <c:import> and <c:redirect>, you can specify request parameters that are
encoded in the URL that <c:url> processes with nested <c:param> actions. You can
do that with the following syntax:

<c:url value [context] [var] [scope]>
<c:param> actions

</c:url>

If you specify a context-relative or page-relative URL for the value attribute,
<c:url> will prepend the context path of the Web application to the URL; for
example, consider the following use of <c:url>:

<c:url value='/test_1.jsp'/>

If the context path of the Web application is /core-jstl/webapp, <c:url> will
produce the following URL: /core-jstl/webapp/test_1.jsp, not taking
into account possible URL rewriting. Because of this feature, you must not use
<c:url> in conjunction with <c:import> or <c:redirect> for relative URLs because
those actions also prepend the context path to relative URLs before passing the URL
to the request dispatcher. For example, consider the following code:

<c:import url='/test_1.jsp'/>

The preceding code fragment is not equivalent to the following code fragment:

<%-- WARNING: this code fragment will throw an exception --%>

<c:url value='/test_1.jsp' var='processedURL'/>
<c:import url='${processedURL}'/>

The preceding code fragment will throw an exception because both <c:url> and
<c:import> will try to prepend the context path to the relative URL. URLs processed
by <c:url> actions are meant to be sent directly to the browser; for example:

<c:url value='/test_1.jsp' var='processedURL'/>
<a href='<c:out value="${processedURL}"/>'>Click Here

The preceding code fragment creates a URL with <c:url> and uses the resulting
URL with the HTML anchor element, which is how <c:url> is meant to be used.

The examples discussed in “Accessing External Resources” on page 210 and
“Accessing Resources in Foreign Contexts” on page 215 both use <c:url> to process
URLs that are sent directly to the browser.

chapter5-urlActions.fm Page 209 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions210

Core Warning

Don’t use <c:url> to encode relative URLs used by <c:import> or
<c:redirect>.

5.5 The <c:param> Action

The <c:param> action specifies a request parameter that is used by enclosing
<c:import>, <c:redirect>, or <c:url> actions. The <c:param> action can be used with
the following syntax:7

<c:param name value/>

The <c:param> action encodes the values specified for its name and value
attributes. Instead of specifying the value for a request parameter with the value
attribute, you can also specify that value in the body of a <c:param> action with this
syntax:

<c:param name>
value

</c:param>

Now that we have a basic understanding of the JSTL URL actions, let’s see how to
put them to use with three real-world examples, as discussed in the following sections.

5.6 Accessing External Resources

This section discusses a Web application, shown in Figure 5–3, that illustrates how
you can use JSTL URL actions to access external resources by scraping book infor-
mation from Amazon.com. The application consists of two JSP pages that use the
<c:import>, <c:url>, and <c:param> actions.

The top picture in Figure 5–3 shows the JSP page that serves as the application’s
welcome page. That page creates four links that are created by HTML anchor
elements. The corresponding URLs for those links are created by <c:url> actions

7. See “<c:param>” on page 491 for a more complete description of <c:param> syntax.

chapter5-urlActions.fm Page 210 Tuesday, October 8, 2002 12:29 PM

5.6 Accessing External Resources 211

with nested <c:param> actions. The rest of the pictures in Figure 5–3 show
information for each of the books listed in the welcome page. That information is
scraped from Amazon.com with a combination of <c:import> actions and the
<str:nestedString> action from the Jakarta String Tag Library.8

Figure 5–3 Scraping Book Information from Amazon.com

The JSP page shown in the top picture in Figure 5–3 is listed in Listing 5.4.

The preceding JSP page uses four <c:url> actions with nested <c:param> actions
to create four URLs that all point to show_book.jsp. That JSP page is specified

8. You can download the Jakarta String Tag Library from
http://jakarta.apache.org/builds/jakarta-taglibs/nightly/
projects/string.

chapter5-urlActions.fm Page 211 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions212

Listing 5.4 Creating the Book URLs

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Book Selection</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 Select a book:
 <p>

 <%-- Create URLs for each book with a page-relative path
 to show_book.jsp and a request parameter named bookUrl
 whose value represents the book's URL on Amazon.com.
 Those URLs are stored in page-scoped variables that
 are used to create HTML links below --%>

 <c:url var='theFutureOfSpacetime' value='show_book.jsp'>
 <c:param name='bookUrl' value='http://www.amazon.com/exec/
obidos/ASIN/0393020223/ref=pd_sim_books_1/102-5303437-2118551'/>
 </c:url>

 <c:url var='whatEvolutionIs' value='show_book.jsp'>
 <c:param name='bookUrl' value='http://www.amazon.com/exec/
obidos/ASIN/0465044255/ref=pd_sim_books_4/102-5303437-2118551'/>
 </c:url>

 <c:url var='goneForGood' value='show_book.jsp'>
 <c:param name='bookUrl' value='http://www.amazon.com/exec/
obidos/ASIN/038533558X/ref=pd_sim_books_3/102-5303437-2118551'/>
 </c:url>

 <c:url var='tellNoOne' value='show_book.jsp'>
 <c:param name='bookUrl' value='http://www.amazon.com/exec/
obidos/ASIN/0440236703/qid=1023935482/sr=8-1/ref=sr_8_1/
104-6556245-7867920'/>
 </c:url>

 <%-- Create HTML links for each book using the URLs stored
 in page-scoped variables that were created above by
 <c:url> --%>

chapter5-urlActions.fm Page 212 Tuesday, October 8, 2002 12:29 PM

5.6 Accessing External Resources 213

with the <c:url> action’s value attribute as a page-relative URL. Each of the four
URLs created by the <c:url> actions also has a request parameter named bookUrl
whose value represents an external URL that points to the respective book’s page on
Amazon.com. Each of the four <c:url> actions stores its processed URLs in
page-scoped variables whose names correspond to the books that they represent.
Subsequently, four HTML anchor elements are created to reference the values
stored in those scoped variables. When a user clicks on one of those anchors, control
is transferred to show_book.jsp, which is listed in Listing 5.5.

 <a href='<c:out value="${theFutureOfSpacetime}"/>'>
 The Future of Spacetime
 <p>

 <a href='<c:out value="${whatEvolutionIs}"/>'>
 What Evolution Is
 <p>

 <a href='<c:out value="${goneForGood}"/>'>
 Gone for Good
 <p>

 <a href='<c:out value="${tellNoOne}"/>'>
 Tell No One
 <p>

 </body>
</html>

Listing 5.5 show_book.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Book Information</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Declare the Jakarta Strings tag library --%>
 <%@ taglib uri='WEB-INF/string.tld' prefix='str'%>
 <%-- Import the page from Amazon.com using the bookUrl
 request parameter --%>

Listing 5.4 Creating the Book URLs (cont.)

chapter5-urlActions.fm Page 213 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions214

 <c:import var='book' url='${param.bookUrl}'/>

 <%-- Store today's date and time in page scope --%>
 <jsp:useBean id='now' class='java.util.Date'/>

 <table>
 <tr>
 <td>Book:</td>
 <td><i>
 <%-- Show the book title --%>
 <str:nestedString open='buying info: '
 close='</title>'>
 <c:out value='${book}'/>
 </str:nestedString>
 </td></i>
 </tr>
 <tr>
 <td>Rank:</td>
 <td><i>
 <%-- Show the book rank --%>
 <str:nestedString open='Sales Rank: '
 close=''>
 <c:out value='${book}'/>
 </str:nestedString>
 </td></i>
 </tr>
 <tr>
 <td>Average Review:</td>
 <td><i>
 <%-- Show the average review --%>
 <str:replace replace='-' with='.'>
 <str:nestedString open='stars-' close='.gif'>
 <c:out value='${book}'/>
 </str:nestedString> stars
 </str:replace>
 </td></i>
 </tr>
 <tr>
 <td>Date and Time:</td>
 <td><i>
 <c:out value='${now}'/>
 </td></i>
 </tr>
 </table>
 </body>
</html>

Listing 5.5 show_book.jsp (cont.)

chapter5-urlActions.fm Page 214 Tuesday, October 8, 2002 12:29 PM

5.7 Accessing Resources in Foreign Contexts 215

The preceding JSP page uses <c:import> to import content from Amazon.com
with the URL specified by the bookUrl request parameter. The var attribute is
specified for the <c:import> actions so that the imported content is stored in a string
that is referenced by a page-scoped variable named book. Subsequently, the
preceding JSP page uses <jsp:useBean> to create a date representing the current
date and time. Finally, the JSP page uses the <str:nestedString> action from the
Jakarta String Tag Library—which extracts a substring specified with strings that
precede and follow the substring—to extract the book’s title, sales rank, and average
review from the string stored in the book page-scoped variable. The preceding JSP
page also displays the current date and time with the scoped variable created by the
<jsp:useBean> action at the top of the page.

Disclaimer: Scraping information from webpages is inherently risky business,
because it relies on the absolute position of static text in a webpage’s HTML; if the
HTML is modified, you may have to change the code that scrapes information. As
this book went to press, the example discussed in this section worked as advertised,
but if Amazon.com modifies their webpage format, it may break that example.

5.7 Accessing Resources in Foreign
Contexts

As websites grow, it’s often convenient to encapsulate distinct functionality in sepa-
rate Web applications. For example, if you develop open-source software, you may
find it convenient to implement a Web application that documents your product and
another Web application that provides examples that potential customers can try.
From the perspective of a single Web application, other Web applications in the
same website are known as foreign contexts.

Websites that have multiple Web applications often need to share resources
between those applications. This section shows you how to use <c:import> to access
resources in a foreign context. Before we proceed with the example, however, you
should know that not all JSP containers support accessing resources that reside in
foreign contexts. The example discussed in this section was tested with Tomcat 4.1,
which lets you enable cross-context access with a special attribute that you specify
when you declare your Web applications. Other JSP containers, such as Resin, do not
support cross-context access.

Core Warning

Not all JSP containers support accessing resources in foreign contexts .

chapter5-urlActions.fm Page 215 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions216

Two Web applications are used in the following example. Those Web applications
and their pertinent JSP files are depicted in Figure 5–4.

Figure 5–4 Two Web Applications and Their Contents

In the following example, index.jsp from the webappTwo application
accesses companyHeader.jsp, companyFooter.jsp, and
create_html_select.jsp from the webappOne application. Tomcat 4.1
requires you to specify those contexts with a crossContext attribute in the
Context element in server.xml. Here is an excerpt from server.xml for the
Web applications shown in Figure 5–4:

...

<Context path="/core-jstl/url/webappOne"

 docBase="C:/core-jstl/webappOne"

 crossContext="true"/>

<Context path="/core-jstl/url/webappTwo"

 docBase="C:/core-jstl/webappTwo"

 crossContext="true"/>

...

The webappTwo application, which consists of a single JSP page—
index.jsp—is shown in Figure 5–5. That application lets you make a donation by
filling out a form, as shown in the top picture in Figure 5–5. If you specify less than
$1000 for your donation, the JSP page is redisplayed with the original information
that you entered and you are asked to increase your donation, as you can see from
the bottom picture in Figure 5–5.

chapter5-urlActions.fm Page 216 Tuesday, October 8, 2002 12:29 PM

5.7 Accessing Resources in Foreign Contexts 217

Figure 5–5 Accessing Resources in a Foreign Context with <c:import> and <c:param>

The JSP page shown in Figure 5–5 is listed in Listing 5.6.

There are three points of interest in the preceding JSP page. First, that JSP page
uses <c:import> to import a header and a footer from the webappOne application.
Second, the JSP page also uses <c:import> to import a JSP page from webappOne
that creates HTML select elements. Finally, the JSP page uses
<fmt:formatNumber> to format the donation amount as currency; we discuss
formatting actions in “Formatting Actions” on page 308.

The header and footer imported from webappOne are simple JSP pages that are
listed in Listing 5.7 and Listing 5.8, respectively.

chapter5-urlActions.fm Page 217 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions218

Listing 5.6 Accessing Foreign Contexts

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>
 Using <c:import> to Access Foreign Contexts
 </title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
 <%@ taglib uri='http://java.sun.com/jstl/fmt' pre-
fix='fmt'%>

 <%-- Import a header shared among Web applications for this
 Web site --%>
 <c:import url='/WEB-INF/jsp/shared/regions/company-
Header.jsp'
 context='/core-jstl/url/webappOne'/>
 <p>

 <%-- If the user didn't give enough, ask for more --%>
 <c:if test='${param.amount < 1000}'>
 We know you can afford more than
 <fmt:formatNumber value='${param.amount}'
 type='currency'/>
 <c:out value='${param.first}'/>. Please increase
 your donation.
 </c:if>

 <%-- Create a page-scoped variable -- for readability only --
 that represents the context-relative URL for
 create_html_select.jsp, which resides in the
 /core-jstl/url/webappOne context --%>
 <c:set var='create_html_component'>
 /WEB-INF/jsp/shared/components/create_html_select.jsp
 </c:set>

 <%-- This form does not specify an action, so this JSP page
 is reloaded when the submit button is activated --%>
 <form method='post'>
 <table>
 <tr>
 <td>First Name:</td>
 <td><input type='text' name='first'
 value='<c:out value="${param.first}"/>'/>
 </td>
 </tr>

chapter5-urlActions.fm Page 218 Tuesday, October 8, 2002 12:29 PM

5.7 Accessing Resources in Foreign Contexts 219

 <tr>
 <td>Last Name:</td>
 <td><input type='text' name='last'
 value='<c:out value="${param.last}"/>'/>
 </td>
 </tr>
 <tr>
 <td>Credit Card Type:</td>
 <td>
 <c:import url='${create_html_component}'
 context='/core-jstl/url/webappOne'>
 <c:param name='selectName' value='cardType'/>
 <c:param name='items'
 value='Visa, Master Card, Discover'/>
 </c:import>
 </td>
 </tr>
 <tr>
 <td>Credit Card Number:</td>
 <td><input type='text' name='cardNumber'
 value='<c:out value="${param.cardNumber}"/>'/>
 </td>
 </tr>
 <tr>
 <td>Donation Amount:</td>
 <td>
 <c:import url='${create_html_component}'
 context='/core-jstl/url/webappOne'>
 <c:param name='selectName' value='amount'/>
 <c:param name='items'
 value='10,100,1000,10000'/>

 <c:param name='formatDisplay'
 value='currency'/>
 </c:import>
 </td>
 </tr>
 </table>
 <p><input type='submit' value='Make Donation'/>
 </form>

 <%-- Import a footer shared among Web applications for this
 Web site --%>
 <c:import url='/WEB-INF/jsp/shared/regions/company-
Footer.jsp'
 context='/core-jstl/url/webappOne'/>
 </body>
</html>

Listing 5.6 Accessing Foreign Contexts (cont.)

chapter5-urlActions.fm Page 219 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions220

As you can see from Figure 5–5 on page 217, the HTML select elements
created by that JSP page retain their values when the page is reloaded. As discussed
in “Retaining Values for HTML Option Elements” on page 129, that behavior can be
implemented with the <c:if> and <c:out> actions; for example, you could implement
the donation amount element like this:

<%-- Create the HTML select element for the donation amount --%>
<select name ='amount'>

 <%-- For each item displayed by this select element, ... --%>
 <c:forEach var='item' items='10,100,1000,10000'>

 <%-- Create the starting option element--%>
 <option

 <%-- If the current item is the same as the last amount
 specified, generate a "select" string contained in the
 option start tag --%>
 <c:if test='${param.amount == item}'>
 selected
 </c:if>

 <%-- Generate the value for the option element --%>
 value='<c:out value="${item}"/>'

 <%-- Close off the option element start tag --%>
 >

Listing 5.7 /WEB-INF/jsp/shared/regions/companyHeader.jsp (from
/core-jstl/url/webappOne context)

 Donations Inc.

<hr>

Listing 5.8 /WEB-INF/jsp/shared/regions/companyFooter.jsp (from
/core-jstl/url/webappOne context)

<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

<hr>
<jsp:useBean id='now' class='java.util.Date'/>
<i>Thanks for stopping by on <c:out value='${now}'/></i>

chapter5-urlActions.fm Page 220 Tuesday, October 8, 2002 12:29 PM

5.7 Accessing Resources in Foreign Contexts 221

 <%-- Generate the display value as currency for the
 option element body --%>
 <fmt:formatNumber value='${item}' type='currency'/>

 <%-- Generate the option element end tag --%>
 </option>
 </c:forEach>
</select>

The preceding code fragment creates an HTML select element for donation
amounts. That select element retains the previously entered donation amount and
formats the displayed amount as currency. It’s not overly difficult to create that
HTML select element with the preceding code, but nonetheless, you must
remember the algorithm and know how to use the <c:forEach>, <c:out>, <c:if> and
<fmt:formatNumber> actions. It would be beneficial if you could encapsulate that
algorithm in a JSP page so you don’t have to recall the algorithm every time you need
to create an HTML select element that retains its values. The JSP page listed in
Listing 5.6 on page 218 uses <c:import> and <c:param> to import a JSP page that
creates HTML select elements. Here’s how the JSP page listed in Listing 5.6 on
page 218 imports that JSP page:

<html>
 ...
 <body>
 ...
 <%-- Create a page-scoped variable -- for readability only --
 that represents the context-relative URL for
 create_html_select.jsp, which resides in the
 /core-jstl/url/webappOne context --%>

 <c:set var='create_html_component'>
 /WEB-INF/jsp/shared/components/create_html_select.jsp
 </c:set>

 <%-- This form does not specify an action, so this JSP page
 is reloaded when the submit button is activated --%>
 <form method='post'>
 <table>
 ...
 <tr>
 <td>Donation Amount:</td>
 <td>
 <c:import url='${create_html_component}'
 context='/core-jstl/url/webappOne'>
 <c:param name='selectName' value='amount'/>
 <c:param name='items'

chapter5-urlActions.fm Page 221 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions222

 value='10,100,1000,10000'/>

 </c:import>

 </td>

 </tr>

 ...

 </table>

 ...

 </form>

 ...

 </body>

</html>

The preceding code fragment creates a scoped variable, solely for readability, that
contains a string representing the URL of the JSP page—
create_html_select.jsp—that creates HTML select elements that retain
their values. That URL is a context-relative path, out of necessity because the JSP
page that it references resides in a foreign context. The scoped variable is
subsequently used to specify the url attribute for the <c:import> action, which also
specifies the foreign context with its context attribute. The <c:import> action
contains two <c:param> actions that specify a selectName request parameter
whose value is amount and an items request parameter whose value is the
comma-separated string 10,100,1000,10000.

The create_html_select.jsp JSP page is listed in Listing 5.9.

Listing 5.9 /WEB-INF/jsp/shared/components/create_html_select.jsp
(from /core-jstl/url/webappOne context)

<%-- This handy JSTL component creates an HTML select
 element that retains its value if its page is reloaded.

 This component can be passed the following request
 parameters:

 selectName: The name of the select element
 items: The option values
 formatValue: How option values should be formatted
 formatDisplay: How option display values should be formatted

 The items parameter must be a comma-separated string, and
 the formatValue and formatDisplay parameters must be one
 of the following: number, percent, or currency.

 Here's an example of how you'd use this component:

chapter5-urlActions.fm Page 222 Tuesday, October 8, 2002 12:29 PM

5.7 Accessing Resources in Foreign Contexts 223

 <form>
 <table>
 <tr>
 <td>Select a value:</td>
 <td>
 <c:import url='create_html_select.jsp'>
 <c:param name='selectName' value='amount'/>
 <c:param name='items' value='1,2,3,4,5'/>

 <c:param name='formatValue'
 value='currency'/>

 <c:param name='formatDisplay'
 value='currency'/>
 </c:import>
 </td>
 </tr>
 </table>
 <p><input type='submit'/>
 </form>

 The preceding code creates an HTML select element with
 the values 1-5. Those values are formatted as currency, so
 they look like this for the US English locale: $1.00,
 $2.00, ... $5.00.
--%>

<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
<%@ taglib uri='http://java.sun.com/jstl/fmt' prefix='fmt'%>

<%-- Set a page-scoped variable representing the last value
 selected for the HTML select element generated by this
 component --%>
<c:set var='lastValue' value='${param[param.selectName]}'/>

<%-- Create the HTML select element --%>
<select name='<c:out value="${param.selectName}"/>'>
 <c:forEach var='item' items='${param.items}'>
 <%-- Start the option starting tag --%>
 <option

 <%-- If this item was the last item selected, add the
 string selected to the option starting tag --%>
 <c:if test='${item == lastValue}'>
 selected

Listing 5.9 /WEB-INF/jsp/shared/components/create_html_select.jsp
(from /core-jstl/url/webappOne context) (cont.)

chapter5-urlActions.fm Page 223 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions224

The preceding JSP page encapsulates the creation of HTML select elements
that retain their values. That JSP page can be passed four request parameters that
represent the name of the select element, the items it displays, and how the

 </c:if>

 <%-- If the option's value should be formatted, format
 it with the formatting type (number, percent, or
 currency) specified with the formatValue parameter --%>
 <c:choose>
 <c:when test='${not empty param.formatValue}'>
 <fmt:formatNumber var='value' value='${item}'
 type='${param.formatValue}'/>
 <c:out escapeXml='false' value='value=${value}'/>
 </c:when>

 <c:otherwise>
 value='<c:out value="${item}"/>'
 </c:otherwise>
 </c:choose>

 <%-- Close off the <option> starting tag --%>
 >

 <%-- If the option's display value should be formatted,
 format it with the formatting type (number, percent,
 or currency) specified with the formatDisplay
 parameter --%>
 <c:choose>
 <c:when test='${not empty param.formatDisplay}'>
 <fmt:formatNumber var='value' value='${item}'
 type='${param.formatDisplay}'/>
 <c:out value='${value}'/>
 </c:when>

 <c:otherwise>
 <c:out value='${item}'/>
 </c:otherwise>
 </c:choose>

 <%-- Add the <option> end tag --%>
 </option>
 </c:forEach>
</select>

Listing 5.9 /WEB-INF/jsp/shared/components/create_html_select.jsp
(from /core-jstl/url/webappOne context) (cont.)

chapter5-urlActions.fm Page 224 Tuesday, October 8, 2002 12:29 PM

5.8 Redirecting a Response 225

element’s values and display values should be formatted. That JSP page represents a
reusable component that can be used by multiple Web applications; therefore, the
example in this section shows how to access that component from a foreign context.
If your JSP container does not support accessing resources in foreign contexts, you
can still take advantage of components like the preceding JSP page by accessing
them with an absolute URL.

5.8 Redirecting a Response

Before JSTL, the only way to redirect an HTTP response in a Java-based Web appli-
cation was to use the HttpServletResponse.sendRedirect method. JSTL
makes redirecting HTTP responses much easier with the <c:redirect> action, as
illustrated by the application shown in Figure 5–6.

The application shown in Figure 5–6 logs access to external resources, which are
JavaWorld articles that discuss Java design patterns. The application consists of two
JSP pages. One of those JSP pages, shown in the top picture in Figure 5–6, uses the
<c:url> and <c:param> JSTL actions, in conjunction with HTML anchor element,
to provide links to five JavaWorld articles. Instead of pointing directly to the articles,
those links point to a second JSP page that’s passed the article’s URL as a request
parameter. The second JSP page, which is not shown in Figure 5–6, logs information
about the links that were selected in the first JSP page and redirects the HTTP
response to the JavaWorld article in question. The bottom pictures in Figure 5–6
show two of those articles.

The second JSP page sends information to the standard servlet log; that
information looks like this:

Remote host 127.0.0.1 accessed Decorator Design Pattern article on
Wed Jun 12 13:31:09 MDT 2002
...
Remote host 127.0.0.1 accessed Composite Design Pattern article on
Wed Jun 12 13:31:44 MDT 2002

The information stored in the log file provides information about the remote host
that accessed the article, the name of the article, and the date and time when the
access occurred.

The JSP page shown in the top picture in Figure 5–6 is listed in Listing 5.10.

For readability, the preceding JSP page uses <c:set> actions to create scoped
variables that reference the JavaWorld article URLs. Subsequently, the JSP page
uses <c:url> with enclosed <c:param> actions to create five URLs that all point to a
JSP page named log_access.jsp. Those URLs all contain a request parameter
named page whose value represents the JavaWorld article’s URL and a request

chapter5-urlActions.fm Page 225 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions226

Figure 5–6 Use <c:redirect> to Log Access to External Resources

chapter5-urlActions.fm Page 226 Tuesday, October 8, 2002 12:29 PM

5.8 Redirecting a Response 227

Listing 5.10 Creating Article URLs

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using <c:redirect></title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Define a prefix variable for readability --%>
 <c:set var='prefix'
 value='http://www.javaworld.com/javaworld/'/>

 <%-- The base URL for the overview article --%>
 <c:set var='overview'
 value='${prefix}jw-10-2001/jw-1012-designpatterns_p.html'/>

 <%-- The base URL for the strategy article --%>
 <c:set var='strategy'
 value='${prefix}jw-04-2002/jw-0426-designpatterns_p.html'/>

 <%-- The base URL for the decorator article --%>
 <c:set var='decorator'
 value='${prefix}jw-12-2001/jw-1214-designpatterns_p.html'/>

 <%-- The base URL for the proxy article --%>
 <c:set var='proxy'
 value='${prefix}jw-02-2002/jw-0222-designpatterns_p.html'/>

 <%-- The base URL for the composite article --%>
 <c:set var='composite'
 value='${prefix}jw-12-2001/jw-1228-jsptemplate_p.html'/>

 <%-- The encoded URL for the overview article --%>
 <c:url var='overviewUrl' value='log_access.jsp'>
 <c:param name='page' value='${overview}'/>
 <c:param name='name' value='Design Patterns Overview'/>
 </c:url>

 <%-- The encoded URL for the strategy article --%>
 <c:url var='strategyUrl' value='log_access.jsp'>
 <c:param name='page' value='${strategy}'/>
 <c:param name='name' value='Strategy Design Pattern'/>
 </c:url>

chapter5-urlActions.fm Page 227 Tuesday, October 8, 2002 12:29 PM

Chapter 5 ■ URL Actions228

 <%-- The encoded URL for the decorator article --%>
 <c:url var='decoratorUrl' value='log_access.jsp'>
 <c:param name='page' value='${decorator}'/>
 <c:param name='name' value='Decorator Design Pattern'/>
 </c:url>

 <%-- The encoded URL for the proxy article --%>
 <c:url var='proxyUrl' value='log_access.jsp'>
 <c:param name='page' value='${proxy}'/>
 <c:param name='name' value='Proxy Design Pattern'/>
 </c:url>

 <%-- The encoded URL for the composite article --%>
 <c:url var='compositeUrl' value='log_access.jsp'>
 <c:param name='page' value='${composite}'/>
 <c:param name='name' value='Composite Design Pattern'/>
 </c:url>

 Here are some JavaWorld articles on Java Design Patterns:
 <p>

 <%-- Links to articles with URLs created above --%>
 <a href='<c:out value="${overviewUrl}"/>'>
 Java Design Patterns Overview
 <p>
 <a href='<c:out value="${strategyUrl}"/>'>
 The Strategy Design Pattern
 <p>
 <a href='<c:out value="${decoratorUrl}"/>'>
 The Decorator Design Pattern
 <p>
 <a href='<c:out value="${proxyUrl}"/>'>
 The Proxy Design Pattern
 <p>
 <a href='<c:out value="${compositeUrl}"/>'>
 J2EE Composite View Pattern

 </body>
</html>

Listing 5.10 Creating Article URLs (cont.)

chapter5-urlActions.fm Page 228 Tuesday, October 8, 2002 12:29 PM

5.8 Redirecting a Response 229

parameter named name that represents the name of the article. Finally, the JSP page
creates five HTML anchor elements that reference the URLs that point to
log_access.jsp. That JSP page is listed in Listing 5.11.

The preceding JSP page uses a scriptlet to write a message to the application log
file and subsequently uses <c:redirect> to redirect the response to the JavaWorld
article.

Listing 5.11 log_access.jsp

<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

<%-- Log a message in the log file --%>
<% application.log("Remote host " + request.getRemoteHost() +
 " accessed " + request.getParameter("name") +
 " article on " + new java.util.Date()); %>

<%-- Redirect the response to the specified page --%>
<c:redirect url='${param.page}'/>

chapter5-urlActions.fm Page 229 Tuesday, October 8, 2002 12:29 PM

