
IN THIS CHAPTER

. Determining When to
Decompile 13

. Knowing the Best
Decompilers 14

. Decompiling a Class 16

. What Makes Decompiling
Possible? 22

. Potential Problems with
Decompiled Code 23

. Quick Quiz 25

. In Brief 25

2Decompiling Classes

“When all else fails, read the manual.”

Murphy’s Technology Laws

Determining When to
Decompile

In an ideal world, decompilation would probably be
unnecessary, except when learning how other people who
don’t like to write good documentation implemented a
certain feature. In the real world, however, there are often
situations where a direct reference to the source code can
be the best, if not the only, solution. Here are some of the
reasons to decompile:

n Recovering the source code that was accidentally lost

n Learning the implementation of a feature or trick

n Troubleshooting an application or library that does
not have good documentation

n Fixing urgent bugs in third-party code for which no
source code exists

n Learning to protect your code from hacking

Decompiling produces the source code from Java bytecode.
It is a reverse process to compiling that is possible due to
the standard and well-documented structure of bytecode.
Just like running a compiler to produce bytecode from the
source code, you can run a decompiler to obtain the source
code for given bytecode. Decompiling is a powerful
method of learning about implementation logic in the
absence of documentation and the source code, which is
why many product vendors explicitly prohibit decompil-
ing and reverse engineering in the license agreement. Be
sure to check the license agreement or get an explicit
permission from the vendor if you are uncertain about the
legality of your actions.

03 0672326388 CH02 4/7/04 3:15 PM Page 13

Some people might argue that you shouldn’t have to resort to extreme measures such as
decompiling and that you should rely on vendors of the bytecode for support and bug fixing.
In a professional environment, if you are a developer of an application, you are responsible
for the functionality being flawless. The users and management do not care whether a bug is
in your code or in third-party code. They care about the problem being fixed, and they will
hold you accountable for it. Contacting the vendor of the third-party code should be a
preferred way. However, in urgent cases when you must provide a solution in a matter of
hours, being able to work with the bytecode will give you that extra edge over your peers,
and maybe a bonus as well.

Knowing the Best Decompilers
To embark on the task of decompiling, you need the right tools. A good decompiler can
produce the source code that will be almost as good as the original source code that was
compiled into bytecode. Some decompilers are free, and some are commercially available.
Although I support the principles behind commercial software, it needs to offer a useful
premium over its free counterparts for me to use it. In the case of decompilers, I have not
found the free ones lacking any features, so my personal recommendation is to use a free tool
such as JAD or JODE. Table 2.1 lists some of the commonly used decompilers and includes a

CHAPTER 2 Decompiling Classes
14

At Riggs Bank we were preparing to go live with a very large and important J2EE application that
was deployed into a cluster of application servers from a leading J2EE vendor. Several teams were
waiting for the production environment to be ready, but for some strange reason the application
server would not start on some of the hosts. The exact same installation would run on some
machines but fail on others with an error message about an invalid configuration URL. To make
matters worse, the URL in the error message could not be found in any of the configuration files,
shell scripts, or environment variables.

Several days were spent trying to fix the problem in vain, and the situation was ready to explode
because several teams were about to miss a critical deadline. After copying and reinstalling the
application server failed, we finally resorted to finding the class in the application server libraries
that was producing the error message. Decompiling it, and a few other classes that were using it,
revealed that the URL was programmatically generated based on the server installation directory.
The installation directory was determined by executing the pwd Unix command. It turned out that
on the failing hosts there were no permissions to execute pwd, but the misleading error message
did not make that obvious. Fixing the permissions took a matter of minutes, and the whole process
from the time we found and decompiled the class took less than an hour. Thus, a looming disaster
was turned into a big win for the IT team.

STORIES FROM THE TRENCHES

03 0672326388 CH02 4/7/04 3:15 PM Page 14

short description highlighting the quality of each one. The URLs presented might become
outdated, so doing a Google search is typically the best way of finding the decompiler’s home
page and the latest version to download.

A very important criterion is how well the decompiler supports more advanced language
constructs such as inner classes and anonymous implementations. Even though the bytecode
format has been very stable since JDK 1.1, it is important to use a decompiler that is
frequently updated by its authors. The new language features in JDK 1.5 will require an
update in decompilers, so be sure to check the release date of the version you are using.

TABLE 2.1
Decompilers

TOOL/RATING LICENSE DESCRIPTION
JAD/Excellent Free for noncommercial use JAD is a very fast, reliable, and sophisticated

decompiler. It has full support for inner classes,
anonymous implementations, and other advanced
language features. The generated code is clean,
and imports are well organized. Several other
decompiling environments use command-line JAD
as the decompiling engine.

JODE/Excellent GNU public license JODE is a very good decompiler written in Java
and available with the full source code on
SourceForge.net. It might not be as fast and
widespread as JAD, but it produces excellent
results, at times even cleaner than JAD. Having the
source code for the decompiler itself cannot be
underestimated for educational purposes.

Mocha/Fair Free Mocha is the first well-known decompiler that has
generated a lot of legal controversy but also a
wave of enthusiasm. Mocha made it obvious that
Java source code can be reconstructed almost to
its original form, which was cheered by the
development community but feared by the legal
departments. The public code has not been
updated since 1996, although Borland has
presumably updated and integrated it into
JBuilder.

Although you might find other decompilers on the market, JAD and JODE are certainly good
enough and therefore widely used. Many products provide graphical user interfaces (GUIs)
but rely on a bundled decompiler to do the actual work. For instance, Decafe, DJ, and Cavaj
are GUI tools bundled with JAD and therefore were not included in the review. For the rest of
this book, we will use command-line JAD to produce the source code. Most of the time, the
command-line decompiler is all you need, but if you prefer to use a GUI, just be sure that it
uses a solid decompiler such as JAD or JODE.

15
Knowing the Best Decompilers

03 0672326388 CH02 4/7/04 3:15 PM Page 15

Decompiling a Class
In case you haven’t used one before, let’s see how good a job a decompiler can do. We will
work with a slightly enhanced version of the MessageInfo class, which is used by Chat to
send the message text and the attributes to a remote host. MessageInfoComplex.java, shown
in Listing 2.1, has an anonymous inner class (MessageInfoPK) and a main() method to illus-
trate some of the more complex cases of decompiling.

LISTING 2.1 MessageInfoComplex Source Code

package covertjava.decompile;

/**

* MessageInfo is used to send additional information with each message across

* the network. Currently it contains the name of the host that the message

* originated from and the name of the user who sent it.

*/

public class MessageInfoComplex implements java.io.Serializable {

String hostName;

String userName;

public MessageInfoComplex(String hostName, String userName) {

this.hostName = hostName;

this.userName = userName;

}

/**

* @return name of the host that sent the message

*/

public String getHostName() {

return hostName;

}

/**

* @return name of the user that sent the message

*/

public String getUserName() {

return userName;

}

CHAPTER 2 Decompiling Classes
16

03 0672326388 CH02 4/7/04 3:15 PM Page 16

/**

* Convenience method to obtain a string that best identifies the user.

* @return name that should be used to identify a user that sent this message

*/

public String getDisplayName() {

return getUserName() + “ (“ + getHostName() + “)”;

}

/**

* Generate message id that can be used to identify this message in a database

* The format is: <ID><UserName><HostName>. Names are limited to 8 characters

* Example: 443651_Kalinovs_JAMAICA would be generated for Kalinovsky/JAMAICA

*/

public String generateMessageId() {

StringBuffer id = new StringBuffer(22);

String systemTime = “” + System.currentTimeMillis();

id.append(systemTime.substring(0, 6));

if (getUserName() != null && getUserName().length() > 0) {

// Add user name if specified

id.append(‘_’);

int maxChars = Math.min(getUserName().length(), 8);

id.append(getUserName().substring(0, maxChars));

}

if (getHostName() != null && getHostName().length() > 0) {

// Add host name if specified

id.append(‘_’);

int maxChars = Math.min(getHostName().length(), 7) ;

id.append(getHostName().substring(0, maxChars));

}

return id.toString();

}

/**

* Include an example of anonymous inner class

*/

public static void main(String[] args) {

new Thread(new Runnable() {

17
Decompiling a Class

03 0672326388 CH02 4/7/04 3:15 PM Page 17

public void run() {

System.out.println(“Running test”);

MessageInfoComplex info = new MessageInfoComplex(“JAMAICA”, “Kalinovsky”);

System.out.println(“Message id = “ + info.generateMessageId());

info = new MessageInfoComplex(null, “JAMAICA”);

System.out.println(“Message id = “ + info.generateMessageId());

}

}).start();

}

/**

* Inner class that can be used as a primary key for MessageInfoComplex

*/

public static class MessageInfoPK implements java.io.Serializable {

public String id;

}

}

After compiling MessageInfoComplex.java using javac with default options, we get three
class files: MessageInfoComplex.class, MessageInfoComplex$MessageInfoPK.class, and
MessageInfoComplex$1.class. As you might know, inner classes and anonymous classes have
been added to Java in JDK 1.1, but the design goal was to preserve bytecode format compati-
bility with earlier versions of Java. That is why these language constructs result in somewhat
independent classes, although they do retain the association with the parent class. The final
step of our test is to run the decompiler on the class file and then compare the generated
source code with the original. Assuming that you have downloaded and installed JAD and
added it to the path, you can run it using the following command:

jad MessageInfoComplex.class

Upon completion, JAD generates the MessageInfoComplex.jad file. This is renamed to
MessageInfoComplex_FullDebug.jad, as shown in Listing 2.2.

LISTING 2.2 MessageInfoComplex Decompiled Code

// Decompiled by Jad v1.5.7g. Copyright 2000 Pavel Kouznetsov.

// Jad home page: http://www.geocities.com/SiliconValley/Bridge/8617/jad.html

// Decompiler options: packimports(3)

// Source File Name: MessageInfoComplex.java

CHAPTER 2 Decompiling Classes
18

LISTING 2.1 Continued

03 0672326388 CH02 4/7/04 3:15 PM Page 18

package covertjava.decompile;

import java.io.PrintStream;

import java.io.Serializable;

public class MessageInfoComplex

implements Serializable

{

public static class MessageInfoPK

implements Serializable

{

public String id;

public MessageInfoPK()

{

}

}

public MessageInfoComplex(String hostName, String userName)

{

this.hostName = hostName;

this.userName = userName;

}

public String getHostName()

{

return hostName;

}

public String getUserName()

{

return userName;

}

public String getDisplayName()

{

return getUserName() + “ (“ + getHostName() + “)”;

}

public String generateMessageId()

19
Decompiling a Class

03 0672326388 CH02 4/7/04 3:15 PM Page 19

{

StringBuffer id = new StringBuffer(22) ;

String systemTime = “” + System.currentTimeMillis();

id.append(systemTime.substring(0, 6));

if(getUserName() != null && getUserName().length() > 0)

{

id.append(‘_’);

int maxChars = Math.min(getUserName().length(), 8);

id.append(getUserName().substring(0, maxChars));

}

if(getHostName() != null && getHostName().length() > 0)

{

id.append(‘_’);

int maxChars = Math.min(getHostName().length(), 7);

id.append(getHostName().substring(0, maxChars));

}

return id.toString();

}

public static void main(String args[])

{

(new Thread(new Runnable() {

public void run()

{

System.out.println(“Running test”);

MessageInfoComplex info = new MessageInfoComplex(“JAMAICA”, “Kalinovsky”);

System.out.println(“Message id = “ + info.generateMessageId());

info = new MessageInfoComplex(null, “JAMAICA”);

System.out.println(“Message id = “ + info.generateMessageId());

}

})).start();

}

String hostName;

String userName;

}

CHAPTER 2 Decompiling Classes
20

LISTING 2.2 Continued

03 0672326388 CH02 4/7/04 3:15 PM Page 20

Take a few moments to review the generated code. As you can see, the code is almost a 100%
match to the original! The order of variables, methods, and inner class declarations is differ-
ent, and so is the formatting, but the logic is absolutely the same. We have also lost the
comments, but well-written Java code such as ours is self-evident, isn’t it?

Our case produced good results because full debugging information is included by javac
when the -g option is used. If the source code was compiled without the debug information
(the -g:none option), the decompiled code would lose some of the clarity, such as the para-
meter names of methods and names of local variables. The following code shows the
constructor and a method that uses local variables for MessageInfoComplex with no debug-
ging information included:

public MessageInfoComplex(String s, String s1)

{

hostName = s;

userName = s1;

}

public String generateMessageId()

{

StringBuffer stringbuffer = new StringBuffer(22);

String s = “” + System.currentTimeMillis();

stringbuffer.append(s.substring(0, 6));

if(getUserName() != null && getUserName().length() > 0)

{

stringbuffer.append(‘_’);

int i = Math.min(getUserName().length(), 8);

stringbuffer.append(getUserName().substring(0, i));

}

if(getHostName() != null && getHostName().length() > 0)

{

stringbuffer.append(‘_’);

int j = Math.min(getHostName().length(), 7);

stringbuffer.append(getHostName().substring(0, j));

}

return stringbuffer.toString();

}

21
Decompiling a Class

03 0672326388 CH02 4/7/04 3:15 PM Page 21

What Makes Decompiling Possible?
Java source is not compiled to binary machine code like C/C++ source is. Compiling Java
source produces intermediate bytecode, which is a platform-independent representation of
the source code. Bytecode can be interpreted or compiled after loading, which results in a
two-step transformation of the high-level programming language into the low-level machine
code. It is the intermediate step that makes decompiling Java bytecode nearly flawless.
Bytecode carries all the significant information found in a source file. Even though the
comments and formatting are lost, all the methods, variables, and programming logic are
obviously preserved. Because the bytecode does not represent the lowest-level machine
language, the format of the code closely resembles the source code. The JVM specification
defines a set of instructions that match Java language operators and keywords, so a fragment
of Java code such as

public String getDisplayName() {

return getUserName() + “ (“ + getHostName() + “)”;

}

is represented by the following bytecode:

0 new #4 <java/lang/StringBuffer>

3 dup

4 aload_0

5 invokevirtual #5 <covertjava/decompile/MessageInfoComplex.getUserName>

8 invokestatic #6 <java/lang/String.valueOf>

11 invokestatic #6 <java/lang/String.valueOf>

14 invokespecial #7 <java/lang/StringBuffer.<init>>

17 ldc #8 < (>

19 invokevirtual #9 <java/lang/StringBuffer.append>

22 aload_0

23 invokevirtual #10 <covertjava/decompile/MessageInfoComplex.getHostName>

26 invokevirtual #9 <java/lang/StringBuffer.append>

29 ldc #11 <)>

31 invokevirtual #9 <java/lang/StringBuffer.append>

34 invokestatic #6 <java/lang/String.valueOf>

37 invokestatic #6 <java/lang/String.valueOf>

40 areturn

Bytecode format is covered in detail in Chapter 17, “Understanding and Tweaking Bytecode,”
but you can see the resemblance by just looking at the bytecode. The decompiler loads the
bytecode and tries to reconstruct the source code based on the bytecode instructions. The
names of class methods and variables are typically preserved, whereas the names of method
parameters and local variables are lost. If the debugging information is available, it provides
the decompiler with parameter names and line numbers—and that makes the reconstructed
source file even more readable.

CHAPTER 2 Decompiling Classes
22

03 0672326388 CH02 4/7/04 3:15 PM Page 22

Potential Problems with Decompiled Code
Most of the time, decompiling produces a readable file that can be changed and recompiled.
However, on some occasions decompiling does not render a file that can be compiled again.
This can happen if the bytecode was obfuscated, and the names given by the obfuscator
result in ambiguity at the compilation. The bytecode is verified when loaded, but the verifica-
tions assume that the compiler has checked for a number of errors. Thus, the bytecode veri-
fiers are not as strict as compilers and obfuscators can take advantage of that to better protect
the intellectual property. For example, here is the JAD output on the anonymous inner class
from the MessageInfoComplex main() method that was obfuscated by the Zelix ClassMaster
obfuscator:

static class c

implements Runnable

{

public void run()

{

boolean flag = a.b;

System.out.println(a(“*4%p\002\026&kj\016\0135”));

b b1 = new b(a(“2\000\006_\”;\0”), a(“3 ‘w\005\02778u\022”));

System.out.println(a(“5$8m\n\037$kw\017X|k”).concat(String.valueOf

➥ (String.valueOf(b1.d()))));

b1 = new b(null, a(“2\000\006_\”;\0”));

System.out.println(a(“5$8m\n\037$kw\017X|k”).concat(String.valueOf

➥ (String.valueOf(b1.d()))));

if(flag)

b.c = !b.c;

}

private static String a(String s)

{

char ac[];

int i;

int j;

ac = s.toCharArray();

i = ac.length;

j = 0;

if(i > 1) goto _L2; else goto _L1

_L1:

ac;

j;

23
Potential Problems with Decompiled Code

03 0672326388 CH02 4/7/04 3:15 PM Page 23

_L10:

JVM INSTR dup2 ;

JVM INSTR caload ;

j % 5;

JVM INSTR tableswitch 0 3: default 72

// 0 52

// 1 57

// 2 62

// 3 67;

goto _L3 _L4 _L5 _L6 _L7

_L4:

0x78;

goto _L8

_L5:

65;

goto _L8

_L6:

75;

goto _L8

_L7:

30;

goto _L8

_L3:

107;

_L8:

JVM INSTR ixor ;

(char);

JVM INSTR castore ;

j++;

if(i != 0) goto _L2; else goto _L9

_L9:

ac;

i;

goto _L10

_L2:

if(j >= i)

return new String(ac);

if(true) goto _L1; else goto _L11

_L11:

}

}

CHAPTER 2 Decompiling Classes
24

03 0672326388 CH02 4/7/04 3:15 PM Page 24

As you can see, it is a total fiasco, not even closely resembling Java source. What’s more
disturbing, JAD produced source code that cannot be compiled. The other two decompilers
have reported an error on the class file. Needless to say, the JVM recognizes and loads the
bytecode in question with no problems. Obfuscation is covered in detail in Chapter 3,
“Obfuscating Classes.”

A powerful way of protecting the intellectual property is encoding the class files and using a
custom class loader to decode them on loading. This way, the decompilers cannot be used on
any of the application classes except for the entry point and the class loader. Although not
unbreakable, encoding makes hacking much more difficult. A hacker would first have to
decompile the class loader to understand the decoding mechanism and then decode all the
class files; only then could he proceed with decompiling. Chapter 19, “Protecting
Commercial Applications from Hacking,” provides information on how to best protect the
intellectual property in Java applications.

Quick Quiz
1. What are the reasons to decompile bytecode?

2. Which compiler options affect the quality of decompilation, and how?

3. Why is decompiled Java bytecode almost identical to the source code?

4. How can you protect the bytecode from decompiling?

In Brief
n Decompiling produces the source code from bytecode, which is almost identical to the

original.

n Decompiling is a powerful method of learning about implementation logic in the
absence of documentation and source code. However, decompiling and reverse engi-
neering might be explicitly prohibited in the license agreement.

n Decompiling requires downloading and installing a decompiler.

n Decompiling Java classes is effective because the bytecode is an intermediate step
between the source code and machine code.

n A good obfuscator can make decompiled code very hard to read and understand.

25
In Brief

03 0672326388 CH02 4/7/04 3:15 PM Page 25

03 0672326388 CH02 4/7/04 3:15 PM Page 26

