
Effective
Enterprise Java

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page i

The Effective Software Development Series provides expert advice on
all aspects of modern software development. Books in the series are well written,
technically sound, of lasting value, and tractable length. Each describes the
critical things the experts almost always do—or almost always avoid doing—to
produce outstanding software.

Scott Meyers (author of the Effective C++ books and CD) conceived of the series
and acts as its consulting editor. Authors in the series work with Meyers and with
Addison-Wesley Professional’s editorial staff to create essential reading for
software developers of every stripe.

TITLES IN THE SERIES

Elliotte Rusty Harold, Effective XML: 50 Specific Ways to Improve Your XML
0321150406

Diomidis Spinellis, Code Reading: The Open Source Perspective 0201799405

E f f e c t i v e S O F T W A R E D E V E L O P M E N T S E R I E S
Scott Meyers, Consult ing Editor

For more information on books in this series please see www.awprofessional.com/esds

E f f e c t i v e S O F T W A R E D E V E L O P M E N T S E R I E S
Scott Meyers, Consult ing Editor

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page ii

Effective
Enterprise
Java

Ted Neward

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and
special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Neward, Ted.
Effective Enterprise Java / Ted Neward.

p. cm.
ISBN 0-321-13000-6 (pbk. : alk. paper)
1. Java (Computer program language) I. Title.

QA76.73.J38N48 2004
005.13'3—dc22 2004012164

Copyright © 2005 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-13000-6
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRS—0807060504
First printing, August 2004

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page iv

Contents

Foreword ix

Preface xi
About the items xiii

Acknowledgments xiv

Reporting bugs, making suggestions, and getting book updates xvi

List of Abbreviations xvii

Chapter 1 Introduction 1
The goals of J2EE 3

Middleware and J2EE 5

J2EE implementation 10

The ten fallacies of enterprise computing 14

Chapter 2 Architecture 19
Item 1: Prefer components as the key element of development,

deployment, and reuse 19

Item 2: Prefer loose coupling across component boundaries 26

Item 3: Differentiate layers from tiers 31

Item 4: Keep data and processors close together 35

Item 5: Remember that identity breeds contention 40

Item 6: Use hook points to inject optimizations, customizations,
or new functionality 47

Item 7: Be robust in the face of failure 53

Item 8: Define your performance and scalability goals 59

Item 9: Restrict EJB to transactional processing 64

Item 10: Never optimize without profiling first 67

Item 11: Recognize the cost of vendor neutrality 74

Item 12: Build in monitoring support 78

Item 13: Build in administration support 87

Item 14: Make deployment as simple as possible 96

v

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page v

Chapter 3 Communication 101
Item 15: Understand all your communications options 101

Item 16: Consider your lookup carefully 108

Item 17: Recognize the cost of network access 114

Item 18: Prefer context-complete communication styles 120

Item 19: Prefer data-driven communication over behavior-driven
communication 128

Item 20: Avoid waiting for remote service requests to respond 136

Item 21: Consider partitioning components to avoid excessive load
on any one machine 140

Item 22: Consider using Web Services for open integration 147

Item 23: Pass data in bulk 150

Item 24: Consider rolling your own communication proxies 155

Chapter 4 Processing 159
Item 25: Keep it simple 160

Item 26: Prefer rules engines for complex state evaluation and execution 163

Item 27: Prefer transactional processing for implicitly nonatomic
failure scenarios 169

Item 28: Differentiate user transactions from system transactions 175

Item 29: Minimize lock windows 180

Item 30: Never cede control outside your component while
holding locks 187

Item 31: Understand EJB transactional affinity 193

Item 32: Prefer local transactions to distributed ones 196

Item 33: Consider using optimistic concurrency for better scalability 200

Item 34: Consider using pessimistic concurrency for explicit
concurrency control 206

Item 35: Consider lower isolation levels for better transactional
throughput 211

Item 36: Use savepoints to keep partial work in the face of rollback 216

Item 37: Replicate resources when possible to avoid lock regions 219

Item 38: Favor the immutable, for it needs no locks 222

Chapter 5 State Management 225
Item 39: Use HttpSession sparingly 227

Item 40: Use objects-first persistence to preserve your domain
model 232

Item 41: Use relational-first persistence to expose the power
of the relational model 236

Item 42: Use procedural-first persistence to create an
encapsulation layer 246

Item 43: Recognize the object-hierarchical impedance mismatch 249

vi ❘ Contents

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page vi

Item 44: Use in-process or local storage to avoid the network 259

Item 45: Never assume you own the data or the database 263

Item 46: Lazy-load infrequently used data 266

Item 47: Eager-load frequently used data 271

Item 48: Batch SQL work to avoid round-trips 274

Item 49: Know your JDBC provider 277

Item 50: Tune your SQL 281

Chapter 6 Presentation 285
Item 51: Consider rich-client UI technologies 286

Dynamic HTML 290

Macromedia Flash 290

Applets 291

The UrlClassLoader class 292

Java Network Launch Protocol (JNLP) and Java Web Start 293

Item 52: Keep HTML minimal 296

Item 53: Separate presentation from processing 299

Item 54: Keep style separate from content 305

Item 55: Pregenerate content to minimize processing 309

Item 56: Validate early, validate everything 311

Chapter 7 Security 321
Item 57: Security is a process, not a product 325

Item 58: Remember that security is not just prevention 329

Item 59: Establish a threat model 333

Item 60: Assume insecurity 336

Item 61: Always validate user input 342

Item 62: Turn on platform security 352

Item 63: Use role-based authorization 356

Item 64: Use SignedObject to provide integrity of Serialized objects 365

Item 65: Use SealedObject to provide confidentiality of Serializable
objects 370

Item 66: Use GuardedObject to provide access control on objects 372

Chapter 8 System 379
Item 67: Aggressively release resources 379

Item 68: Tune the JVM 387

Item 69: Use independent JREs for side-by-side versioning 395

Item 70: Recognize ClassLoader boundaries 400

Isolation 403

Versioning 404

Contents ❘ vii

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page vii

Item 71: Understand Java Object Serialization 408

The serialVerUID field 411

Customization (writeObject and readObject) 412

Replacement (writeReplace and readResolve) 413

Further Details 415

Item 72: Don’t fight the garbage collector 416

Item 73: Prefer container-managed resource management 426

Item 74: Use reference objects to augment garbage collection behavior 430

SoftReference objects 434

WeakReference objects 437

PhantomReference objects 439

Item 75: Don’t be afraid of JNI code on the server 445

Bibliography 449

Index 457

viii ❘ Contents

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page viii

Foreword

Designing and implementing large-scale enterprise systems is hard.
Building effective enterprise Java deployments is even harder. I see these
difficulties on a daily basis. When consulting on enterprise projects, I see
the real-world issues that developers are facing. I have also seen discus-
sions, frustrations, and solutions to some of the issues on a daily basis on
TheServerSide.com (Your Enterprise Java Community). TheServerSide.
com really grew from the needs of developers faced with the new world of
J2EE. It was the water cooler that allowed us to chat about solutions that
worked for us, and it saw the growth of enterprise Java patterns.

Developing for the enterprise is a very different beast when compared to
building smaller, standalone applications. We have to consider issues that
we can safely ignore in the other world. As soon as we have to share data
among multiple users, we start down the enterprise path. Then we start
facing questions: What is the best solution for allowing concurrency to
this data? How coherent and correct does it have to be? How can we scale
up from 2 to 50 to 1,000 clients? These are all significant questions, and I
don’t feel that the average developer has enough help in answering them.
Well, simply answering the questions may not be the correct focus. We
need to be taught about the various issues involved and shown techniques
that can help with the various problems. With Ted Neward’s book, we are
now armed with the knowledge that will allow us to come up with the
right balance in the solution for each particular problem.

No book has attacked these problems quite like Effective Enterprise Java
does. The most important part of this book is that it teaches you two
things really well.

You will understand the general issues of enterprise computing.

These enterprise problems are far from new. Ted has been around the
block, and he understands the core issues at work. A non-Java developer
would get a lot out of this book for this very reason. What you learn here

ix

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page ix

will be with you for as long as you develop enterprise solutions. The
language and APIs may change, but you will understand the issues in
building a good architecture, the options you have for communication,
the choices for where to store state, the various security concerns, and so
much more.

You will be able to attack the problems by using enterprise Java.

Although the book offers genuine insight into the general enterprise
problems, it also gives you tools to solve them with enterprise Java today.
You will understand more about where the various enterprise Java tech-
nologies fit together. When would you use Web Services? What can mes-
saging do for you? What is EJB good for? This book provides answers to
these questions.

It is great to have some answers to these common questions. The style of
the book, in which you are given a set of “effective items,” gets right to the
point. Get stuck in, and enjoy the ride!

Dion Almaer
Editor-in-Chief, TheServerSide.com

x ❘ Foreword

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page x

Preface

Those who cannot remember the past are doomed to repeat it.

—George Santayana

These are heady days for Java programmers. Commercially available for
less than a decade, Java has nevertheless emerged as the language of
choice for enterprise systems on nearly all major computing platforms.
Companies and individuals with challenging programming problems
increasingly embrace the language and platform, and the question faced
by those who do not use Java is often when they will start, not if. The
breadth and scope of the specifications and libraries defined by and under
the Java 2 Enterprise Edition Specification—which both dwarfs and sub-
sumes that of the Java language itself—makes it possible to write rich,
complex systems without sacrificing performance or implementing com-
mon algorithms or data structures from scratch. The Java language and
virtual machines grow ever more powerful. Tools and environments for
Java development grow ever more abundant and robust. Commercial
libraries all but obviate the need to write code in many application areas.

Scott Meyers wrote much the same in his opening to More Effective C++
[Meyers97] almost a decade ago. It seems a fitting tribute to use that para-
graph, suitably modified, as the opening in this book. As a matter of fact,
the two paragraphs are deliberately side-by-side similar. In many ways, we
now find ourselves in a part of the Golden Age of Java, looking out over a
landscape that stretches from horizon to horizon, with ample space and
established borders that seem to have no limit. Just as C++ ruled the land-
scape in 1996, Java rules the landscape in 2004.

The chief aim in drawing these parallels is to recognize the scenario—not
more than two years after Scott wrote that paragraph, C++ was toppled
from its throne by this upstart named Java. Just as C++ developers had

xi

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xi

finally begun to “figure everything out,” this new language and environ-
ment leapt forward into the fray, and almost overnight, it seemed, took
over. In turn, Java now faces fierce competition from Microsoft’s .NET
platform. The natural concern, then, is to see that history doesn’t repeat
itself. To do that, Java developers must make sure that the systems they
develop meet or exceed expectations set for them. To do that, Java devel-
opers need to know how to make the most of the language and platform
they use.

It has been said, in many places by many people, that it takes about five
years to “figure out” a technology and how best to use it. Certainly this
was true for C++: in 1990, we looked at C++ as simply another object-
oriented language, and therefore using it should mirror the best-usage
practices discovered with Smalltalk. By 1995, we were well out of that
world and starting to explore the uniqueness that C++ provides (such as
templates and the STL). Certainly this was also true of HTTP: in 1995,
when the browser debuted, we looked at HTTP as the means by which
HTML was delivered. Now, we look at HTTP as a universal transport by
which to transmit all sorts of data.

Thus, the timing is fortuitous for Java. It officially debuted in 1995; for all
intents and purposes, however, Java truly entered the mindscape of the
average developer in 1997 or so, having by that point built enough of a
“critical mass” to win its way past the critics and skeptics. Almost a decade
later, we have been writing Java applications for most of that time, and
we’re starting to see the practices and patterns that have emerged to assist
(but not necessarily guarantee) successful deployments. As a community,
we’re just starting to hit our stride.

Some things aren’t different from the C++ days. We have the same ques-
tions, modified for the Java world, as those we asked (and Scott answered)
a decade ago about C++. As the language and platform have matured and
our experience with Java has increased, our needs for information have
changed. In 1996, people wanted to know what Java was. “It has some-
thing to do with the Internet, whatever that is” was a common explana-
tion. Initially, developers focused on using applets, making rich browser
clients, and harnessing Java’s cross-platform portability. By 1998, they
wanted to know how to make it work: “How do I access a relational data-
base? How do I internationalize? How do I reach across physical machine
boundaries?” Now, Java programmers ask higher-level questions: “How
can I design my enterprise systems so they will adapt to future demands?

xii ❘ Preface

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xii

How can I improve the efficiency of my code without compromising its
correctness or making it harder to use? How can I implement sophisti-
cated functionality not directly supported by the language or platform?”

As if this weren’t enough, a new dimension has arisen in the whole enter-
prise system arena, neatly captured in two words: Web Services. Even as
Java developers are asking the hard higher-level questions about Java, they
face the start of the cycle with Web Services—what is a Web Service, how
does it work, and, perhaps most importantly, how does it relate to Java?

In this book, I answer these questions and many like them.

About the items

One thing I feel compelled to point out, before we get too deeply into it
all, is that readers may notice a significant difference between the items in
this book and those from books like Effective Java [Bloch] and Effective
C++ [Meyers95]. In particular, the scope of the items in this book is
much larger than that in other similar books—in here, there’s less focus
on language and/or APIs and more on design-level constructs and/or
usage patterns.

This is not an accident; in fact, I believe that this is in keeping with the
larger scope of an enterprise application as a whole. Certainly, without
question, all of Effective Java also applies to building enterprise applica-
tions, but to simply remain at that level misses the larger point, that enter-
prise systems have much more to worry about, things outside of the scope
of the language or APIs.

For example, an unsuccessful EJB application usually begins not with mis-
use of a particular method call or interface but with the design of entity
beans that are called directly from a client. This isn’t so much an imple-
mentation problem as a design problem, and solving it requires a more
“high-level” view of what the entity bean is trying to provide in general.
(See Item 40 for more details about entity beans and their consequences.)

As a result, the items presented in this book strive to help developers rec-
ognize efficiency not at a language level but at a systemic and architec-
tural level. Many of these items will be familiar ground to some; many
will be simple codification of something some readers “always knew.”
That’s OK—what’s “intuitive” to one reader will be new to another, and
vice versa.

Preface ❘ xiii

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xiii

In addition, I have carefully tried to avoid walking on familiar territory. A
number of books have been released that discuss best practices and effec-
tive use of the virtual machine and/or the language; see the Bibliography
for a complete list. As a result, discussions of material covered there won’t
be repeated here unless it has some particular relevance or application
within the enterprise space.

Toward that end, I will refer frequently to patterns already established
within the enterprise Java literature space; in particular, I will tend to
lean heavily on Fowler’s Patterns of Enterprise Application Architecture
(Addison-Wesley, 2002), Hohpe and Woolf ’s Enterprise Application Inte-
gration (Addison-Wesley, 2004), and Alur, Crupi, and Malks’s Core J2EE
Patterns, 2nd ed. (Addison-Wesley, 2003), among others. (Again, see the
Bibliography for a complete list.)

Where a pattern is cited by name, I use the standard Gang-of-Four pat-
tern citation format, citing the pattern name with its page number in
parentheses behind it; however, because these patterns come from differ-
ent sources, I also put the author’s names (or “GOF” for the Gang-of-
Four book, Design Patterns) as part of the page citation. So a reference to
the Data Transfer Object pattern from Fowler’s Patterns of Enterprise
Application Architecture book will be cited as “Data Transfer Object
([Fowler401])”.

Acknowledgments

Authors have a tendency to spend a lot of time thanking people; there’s a
reason for that.

First and foremost, I want to thank my peers in the industry, most of all
my fellow instructors at DevelopMentor. Kevin Jones, Brian Maso, Stu
Halloway, Simon Horrell, Dan Weston, and Bob Beauchemin all served
as sounding boards for the topics in this book at some point over its
30-month gestation. Tim Ewald, Don Box, Fritz Onion, Keith Brown,
Mike Woodring, Ingo Rammer, and Peter Drayton all gave me insights
into the Java platform by routinely smashing my preconceptions and
assumptions in discussions that had nothing to do with Java. Outside of
DevelopMentor, my fellow NoFluffJustStuff Symposium speakers Dion
Alamer, Bruce Tate, Mike Clark, Erik Hatcher, Glenn Vandenburg, Dave
Thomas, Jason Hunter, James Duncan Davidson, and Ron Bodkin, among
others, all forced me to justify my assertions, questioned my conclusions,

xiv ❘ Preface

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xiv

and offered suggestions and tips designed to make the book a stronger
work. Thanks to Jay Zimmerman for inviting me to be a part of
NoFluffJustStuff in the first place. Numerous other speakers at confer-
ences far and wide (far too many to list here) played a similar role, known
in the common vernacular as “keeping me honest.”

Second, I must tip the hat to the staff at Addison-Wesley. This book took
over twice as long as it was supposed to, and never once did Mike Hen-
drickson, the editor who started the project, nor Ann Sellers, the editor
who inherited the project, use anything but polite language when asking
if it was done—their patience far exceeded what mine would have been
in their shoes. The reviewers, both of the content when it was hosted on
the Web via my blog, as well as the more finalized manuscript drafts, did
a Herculean job reading through the material and offering up copious
corrections, suggestions, enhancements, and ideas. Thanks to Matt An-
derson, Kevin Bentley, Dave Cooke, Mary Dageforde, Kevin Davis, Mat-
thew P. Johnson, and Bruce Scharlau for all their help.

Writing this book has been both a labor of absolute love and an exercise
in abject terror. While I’ve always looked for a project like this to let me
rant about my thoughts on enterprise Java development, few books have
“raised the bar” as the previous Effective books have done. With Effective
C++, Scott Meyers gave me (and millions of other neophyte C++ pro-
grammers) the leg up I needed to start using C++, rather than just flailing
around with it. Then Joshua Bloch wrote Effective Java, bringing the
beauty of the item format to the Java platform. Elliote Rusty Harold fur-
ther upped the ante with Effective XML. If ever an author were looking
for an intimidating set of authors to follow, those three fill out the set
admirably. Fortunately, help was available in the form of Scott Meyers,
who spent almost as much time reviewing and criticizing (in the good
sense) this book as I did writing it. His comments and insights helped
transform a tolerable collection of suggestions into the book you see in
front of you. Scott, I owe you a tremendous debt of gratitude, both for
your help during the last year and your help 10 years ago as I struggled to
understand C++. It has been a privilege and an honor to do this with you;
thank you.

Finally, of course, I must thank my family and friends, those loving
people who periodically staged interventions and dragged me, kicking
and screaming, back into this thing they kept calling “the real world”: par-
ties, holidays, even just hanging out for a night or two relaxing over the

Preface ❘ xv

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xv

Nintendo64 or XBox. Though I’ll never admit it out loud, they kept me
sane in the face of the mounting pressure of writing this book during the
last two years.

Reporting bugs, making suggestions, and getting book updates

I have tried to make this book as accurate, readable, and useful as pos-
sible, but I know there is room for improvement. (There is always room
for improvement.) If you find an error of any kind—technical, grammat-
ical, typographical, spiritual, whatever—please tell me about it. I will try
to ensure the mistake is corrected in a future printing of the book, and if
you are the first person to report it, I will happily add your name to the
book’s acknowledgments. Likewise, if you have suggestions or ideas on
how to improve the book for subsequent revisions or editions, I’m all eyes
and ears.

I continue to collect guidelines for effective enterprise programming in
Java. If you have ideas for new guidelines, I’d be delighted if you’d share
them with me. You can either find me on one of several public Java pro-
gramming mailing lists, the predominant one being the ADVANCED-
JAVA list at DISCUSS.DEVELOP.COM, or you can reach me at:

Ted Neward
c/o Addison-Wesley Professional/Prentice Hall PTR
Pearson Technology Group
75 Arlington St., Suite 300
Boston, MA 02116

Alternatively, you can drop me an email at ted@neward.net.

I maintain a list of changes to this book since its first printing (includ-
ing bug fixes, clarifications, commentary, and technical updates) on the
book’s blog, http://www.neward.net/ted/EEJ/index.jsp. Please feel free to
post comments and/or errata there if you wish to share them with your
fellow readers.

Enough preliminaries. On with the show!

xvi ❘ Preface

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xvi

List of Abbreviations

ACID atomic, consistent, isolated, and durable
AWT Abstract Windowing Toolkit

BLOB Binary Large Object
BMP Bean-Managed Persistence

CMP Container-Managed Persistence
COM Component Object Model
CORBA Common Object Request Broker Architecture
CSS Cascading Style Sheets

DCOM Distributed COM
DHTML Dynamic HTML
DMZ demilitarized zone
DNS Domain Name System
DOM Document Object Model
DTC$ distributed transaction controllers

EJB Enterprise Java Bean

HTML Hyper-Text Markup Language
HTTP Hyper-Text Transmission Protocol

IDL Interface Description Language
IIOP Internet Inter-Orb Protocol
IPC interprocess communication

J2EE Java 2 Enterprise Edition
J2SE Java 2 Standard Edition
JAAS Java Authentication and Authorization Service
JAXB Java API for XML Binding
JAXM Java API for XML Messaging

xvii

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xvii

JAXP Java API for XML Parsing
JAX-RPC Java API for XML RPC
JCA Java Connector API
JDBC Java DataBase Connectivity
JDK Java Development Kit
JDO Java Data Objects
JESS Java Expert System Shell
JIT just-in-time
JITA just-in-time activation
JMS Java Message Service
JMX Java Management Extensions
JNDI Java Naming and Directory Interface
JNI Java Native Interface
JNLP Java Network Launch Protocol
JRE Java Runtime Environment
JSP Java Server Pages
JSR Java Specification Request
JSSE Java Secure Sockets Extension
JTA Java Transaction API
JVM Java Virtual Machine
JVMDI Java Virtual Machine Debug Interface
JVMPI Java Virtual Machine Profiler Interface
JVMTI Java Virtual Machine Tools Interface

LAN local area network

MDBs Message-Driven Beans
MIB Message Information Block
MVC Model-View-Controller

NAT Network Address Translation
NFS Network File System

OODBMS object-oriented database management system
ORB Object Request Broker
OSI
OWASP Open Web Application Security Project

POJOs plain old Java objects
POP3 Post Office Protocol v 3

xviii ❘ List of Abbreviations

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xviii

RDBMS relational database management system
RMI Remote Method Invocation
RMI/IIOP RMI over IIOP
RMI/JRMP RMI over Java Remote Method Protocol
RPC Remote Procedure Call

SAX Streaming API for XML
SMTP Simple Mail Transport Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer
STL Standard Template Library
SWT Standard Widget Toolkit

TLS Transport Layer Security
TPC two-phase commit
TTL time-to-live value

URI Universal Resource Identifier
URL Universal Resource Locator
URN Universal Resource Name

VM virtual machine

W3C World Wide Web Consortium
WSDL Web Services Definition Language
WS-I Web Services-Interoperability

XML Extensible Markup Language
XSD XML Schema Definition
XSLT XSL:Transformation, commonly also written as XSL:T

List of Abbreviations ❘ xix

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xix

30800 00 pp i-xx r2ah 7/28/04 1:22 PM Page xx

