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Foreword

Designing and implementing large-scale enterprise systems is hard.
Building effective enterprise Java deployments is even harder. I see these
difficulties on a daily basis. When consulting on enterprise projects, I see
the real-world issues that developers are facing. I have also seen discus-
sions, frustrations, and solutions to some of the issues on a daily basis on
TheServerSide.com (Your Enterprise Java Community). TheServerSide.
com really grew from the needs of developers faced with the new world of
J2EE. It was the water cooler that allowed us to chat about solutions that
worked for us, and it saw the growth of enterprise Java patterns.

Developing for the enterprise is a very different beast when compared to
building smaller, standalone applications. We have to consider issues that
we can safely ignore in the other world. As soon as we have to share data
among multiple users, we start down the enterprise path. Then we start
facing questions: What is the best solution for allowing concurrency to
this data? How coherent and correct does it have to be? How can we scale
up from 2 to 50 to 1,000 clients? These are all significant questions, and I
don’t feel that the average developer has enough help in answering them.
Well, simply answering the questions may not be the correct focus. We
need to be taught about the various issues involved and shown techniques
that can help with the various problems. With Ted Neward’s book, we are
now armed with the knowledge that will allow us to come up with the
right balance in the solution for each particular problem.

No book has attacked these problems quite like Effective Enterprise Java
does. The most important part of this book is that it teaches you two
things really well.

You will understand the general issues of enterprise computing.

These enterprise problems are far from new. Ted has been around the
block, and he understands the core issues at work. A non-Java developer
would get a lot out of this book for this very reason. What you learn here
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will be with you for as long as you develop enterprise solutions. The
language and APIs may change, but you will understand the issues in
building a good architecture, the options you have for communication,
the choices for where to store state, the various security concerns, and so
much more.

You will be able to attack the problems by using enterprise Java.

Although the book offers genuine insight into the general enterprise
problems, it also gives you tools to solve them with enterprise Java today.
You will understand more about where the various enterprise Java tech-
nologies fit together. When would you use Web Services? What can mes-
saging do for you? What is EJB good for? This book provides answers to
these questions.

It is great to have some answers to these common questions. The style of
the book, in which you are given a set of “effective items,” gets right to the
point. Get stuck in, and enjoy the ride!

Dion Almaer
Editor-in-Chief, TheServerSide.com

x ❘ Foreword
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Preface

Those who cannot remember the past are doomed to repeat it.

—George Santayana

These are heady days for Java programmers. Commercially available for
less than a decade, Java has nevertheless emerged as the language of
choice for enterprise systems on nearly all major computing platforms.
Companies and individuals with challenging programming problems
increasingly embrace the language and platform, and the question faced
by those who do not use Java is often when they will start, not if. The
breadth and scope of the specifications and libraries defined by and under
the Java 2 Enterprise Edition Specification—which both dwarfs and sub-
sumes that of the Java language itself—makes it possible to write rich,
complex systems without sacrificing performance or implementing com-
mon algorithms or data structures from scratch. The Java language and
virtual machines grow ever more powerful. Tools and environments for
Java development grow ever more abundant and robust. Commercial
libraries all but obviate the need to write code in many application areas.

Scott Meyers wrote much the same in his opening to More Effective C++
[Meyers97] almost a decade ago. It seems a fitting tribute to use that para-
graph, suitably modified, as the opening in this book. As a matter of fact,
the two paragraphs are deliberately side-by-side similar. In many ways, we
now find ourselves in a part of the Golden Age of Java, looking out over a
landscape that stretches from horizon to horizon, with ample space and
established borders that seem to have no limit. Just as C++ ruled the land-
scape in 1996, Java rules the landscape in 2004.

The chief aim in drawing these parallels is to recognize the scenario—not
more than two years after Scott wrote that paragraph, C++ was toppled
from its throne by this upstart named Java. Just as C++ developers had

xi

30800 00 pp i-xx r2ah  7/28/04  1:22 PM  Page xi



finally begun to “figure everything out,” this new language and environ-
ment leapt forward into the fray, and almost overnight, it seemed, took
over. In turn, Java now faces fierce competition from Microsoft’s .NET
platform. The natural concern, then, is to see that history doesn’t repeat
itself. To do that, Java developers must make sure that the systems they
develop meet or exceed expectations set for them. To do that, Java devel-
opers need to know how to make the most of the language and platform
they use.

It has been said, in many places by many people, that it takes about five
years to “figure out” a technology and how best to use it. Certainly this
was true for C++: in 1990, we looked at C++ as simply another object-
oriented language, and therefore using it should mirror the best-usage
practices discovered with Smalltalk. By 1995, we were well out of that
world and starting to explore the uniqueness that C++ provides (such as
templates and the STL). Certainly this was also true of HTTP: in 1995,
when the browser debuted, we looked at HTTP as the means by which
HTML was delivered. Now, we look at HTTP as a universal transport by
which to transmit all sorts of data.

Thus, the timing is fortuitous for Java. It officially debuted in 1995; for all
intents and purposes, however, Java truly entered the mindscape of the
average developer in 1997 or so, having by that point built enough of a
“critical mass” to win its way past the critics and skeptics. Almost a decade
later, we have been writing Java applications for most of that time, and
we’re starting to see the practices and patterns that have emerged to assist
(but not necessarily guarantee) successful deployments. As a community,
we’re just starting to hit our stride.

Some things aren’t different from the C++ days. We have the same ques-
tions, modified for the Java world, as those we asked (and Scott answered)
a decade ago about C++. As the language and platform have matured and
our experience with Java has increased, our needs for information have
changed. In 1996, people wanted to know what Java was. “It has some-
thing to do with the Internet, whatever that is” was a common explana-
tion. Initially, developers focused on using applets, making rich browser
clients, and harnessing Java’s cross-platform portability. By 1998, they
wanted to know how to make it work: “How do I access a relational data-
base? How do I internationalize? How do I reach across physical machine
boundaries?” Now, Java programmers ask higher-level questions: “How
can I design my enterprise systems so they will adapt to future demands?
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How can I improve the efficiency of my code without compromising its
correctness or making it harder to use? How can I implement sophisti-
cated functionality not directly supported by the language or platform?”

As if this weren’t enough, a new dimension has arisen in the whole enter-
prise system arena, neatly captured in two words: Web Services. Even as
Java developers are asking the hard higher-level questions about Java, they
face the start of the cycle with Web Services—what is a Web Service, how
does it work, and, perhaps most importantly, how does it relate to Java? 

In this book, I answer these questions and many like them.

About the items

One thing I feel compelled to point out, before we get too deeply into it
all, is that readers may notice a significant difference between the items in
this book and those from books like Effective Java [Bloch] and Effective
C++ [Meyers95]. In particular, the scope of the items in this book is
much larger than that in other similar books—in here, there’s less focus
on language and/or APIs and more on design-level constructs and/or
usage patterns.

This is not an accident; in fact, I believe that this is in keeping with the
larger scope of an enterprise application as a whole. Certainly, without
question, all of Effective Java also applies to building enterprise applica-
tions, but to simply remain at that level misses the larger point, that enter-
prise systems have much more to worry about, things outside of the scope
of the language or APIs.

For example, an unsuccessful EJB application usually begins not with mis-
use of a particular method call or interface but with the design of entity
beans that are called directly from a client. This isn’t so much an imple-
mentation problem as a design problem, and solving it requires a more
“high-level” view of what the entity bean is trying to provide in general.
(See Item 40 for more details about entity beans and their consequences.)

As a result, the items presented in this book strive to help developers rec-
ognize efficiency not at a language level but at a systemic and architec-
tural level. Many of these items will be familiar ground to some; many
will be simple codification of something some readers “always knew.”
That’s OK—what’s “intuitive” to one reader will be new to another, and
vice versa.
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In addition, I have carefully tried to avoid walking on familiar territory. A
number of books have been released that discuss best practices and effec-
tive use of the virtual machine and/or the language; see the Bibliography
for a complete list. As a result, discussions of material covered there won’t
be repeated here unless it has some particular relevance or application
within the enterprise space.

Toward that end, I will refer frequently to patterns already established
within the enterprise Java literature space; in particular, I will tend to
lean heavily on Fowler’s Patterns of Enterprise Application Architecture
(Addison-Wesley, 2002), Hohpe and Woolf ’s Enterprise Application Inte-
gration (Addison-Wesley, 2004), and Alur, Crupi, and Malks’s Core J2EE
Patterns, 2nd ed. (Addison-Wesley, 2003), among others. (Again, see the
Bibliography for a complete list.) 

Where a pattern is cited by name, I use the standard Gang-of-Four pat-
tern citation format, citing the pattern name with its page number in
parentheses behind it; however, because these patterns come from differ-
ent sources, I also put the author’s names (or “GOF” for the Gang-of-
Four book, Design Patterns) as part of the page citation. So a reference to
the Data Transfer Object pattern from Fowler’s Patterns of Enterprise
Application Architecture book will be cited as “Data Transfer Object
([Fowler401])”.
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“raised the bar” as the previous Effective books have done. With Effective
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admirably. Fortunately, help was available in the form of Scott Meyers,
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Finally, of course, I must thank my family and friends, those loving
people who periodically staged interventions and dragged me, kicking
and screaming, back into this thing they kept calling “the real world”: par-
ties, holidays, even just hanging out for a night or two relaxing over the
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Nintendo64 or XBox. Though I’ll never admit it out loud, they kept me
sane in the face of the mounting pressure of writing this book during the
last two years.

Reporting bugs, making suggestions, and getting book updates

I have tried to make this book as accurate, readable, and useful as pos-
sible, but I know there is room for improvement. (There is always room
for improvement.) If you find an error of any kind—technical, grammat-
ical, typographical, spiritual, whatever—please tell me about it. I will try
to ensure the mistake is corrected in a future printing of the book, and if
you are the first person to report it, I will happily add your name to the
book’s acknowledgments. Likewise, if you have suggestions or ideas on
how to improve the book for subsequent revisions or editions, I’m all eyes
and ears.

I continue to collect guidelines for effective enterprise programming in
Java. If you have ideas for new guidelines, I’d be delighted if you’d share
them with me. You can either find me on one of several public Java pro-
gramming mailing lists, the predominant one being the ADVANCED-
JAVA list at DISCUSS.DEVELOP.COM, or you can reach me at:

Ted Neward
c/o Addison-Wesley Professional/Prentice Hall PTR
Pearson Technology Group
75 Arlington St., Suite 300
Boston, MA 02116

Alternatively, you can drop me an email at ted@neward.net.

I maintain a list of changes to this book since its first printing (includ-
ing bug fixes, clarifications, commentary, and technical updates) on the
book’s blog, http://www.neward.net/ted/EEJ/index.jsp. Please feel free to
post comments and/or errata there if you wish to share them with your
fellow readers.

Enough preliminaries. On with the show!
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IIOP Internet Inter-Orb Protocol 
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JAXP Java API for XML Parsing
JAX-RPC Java API for XML RPC 
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JDBC Java DataBase Connectivity
JDK Java Development Kit
JDO Java Data Objects 
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JIT just-in-time 
JITA just-in-time activation 
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JSP Java Server Pages
JSR Java Specification Request
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JVM Java Virtual Machine 
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MIB Message Information Block
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NFS Network File System
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ORB Object Request Broker 
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POJOs plain old Java objects
POP3 Post Office Protocol v 3
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RDBMS relational database management system
RMI Remote Method Invocation 
RMI/IIOP RMI over IIOP
RMI/JRMP RMI over Java Remote Method Protocol
RPC Remote Procedure Call

SAX Streaming API for XML
SMTP Simple Mail Transport Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer
STL Standard Template Library
SWT Standard Widget Toolkit

TLS Transport Layer Security 
TPC two-phase commit
TTL time-to-live value 

URI Universal Resource Identifier
URL Universal Resource Locator
URN Universal Resource Name

VM virtual machine 

W3C World Wide Web Consortium
WSDL Web Services Definition Language
WS-I Web Services-Interoperability

XML Extensible Markup Language
XSD XML Schema Definition
XSLT XSL:Transformation, commonly also written as XSL:T 
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