
“Book” — 2003/9/26 — 22:51 — page 51 — #77

Chapter 4

Managed Smart Clients

CHAPTER OVERVIEW

• Container-Managed Mobile Clients

• OSGi Containers

• OSGi Bundle Interactions

• IBM Service Management Framework

• A Simple Echo Service Example

• Smart Client with HTTP Front End

• The Pizza Order Example

• Mobile Gateways

51

“Book” — 2003/9/26 — 22:51 — page 52 — #78

52 Managed Smart Clients Chapter 4

In Chapter 3, we discussed the smart client paradigm. However, for com-
plex mobile applications, monolithic clients with intertangled code segments
are very hard to develop and maintain. We need a framework to develop
modularized application and service components. In this chapter, we in-
troduce the concept of managed smart clients—self-contained components
inside software containers. The container provides common crosscutting ser-
vices and a framework for components to communicate with each other.
The industry standard for lightweight mobile containers is the OSGi (Open
Services Gateway initiative) specification. Using several example OSGi ap-
plications running on IBM Service Management Framework, we explain how
OSGi-managed smart clients work in real-world applications. In addition to
supporting managed clients, OSGi applications can also deliver mobile gate-
way services. We will cover the gateway architecture near the end of this
chapter.

4.1 Container-Managed Applications

In the field of software engineering, the term container refers to specialized
software that runs other software. For example,

• The MIDP Application Management Software (AMS) is a container
that installs, starts, pauses, stops, updates, and deletes MIDlet ap-
plications. In the CDC Personal Basis Profile, the Xlet programming
model also features container-managed life-cycle methods.

• A Java servlet engine is a container that invokes servlets and provides
access to the HTTP context.

• The Java Virtual Machine (JVM) itself is a container. It monitors Java
applications for proper memory usage (garbage collector) and security.

In the next two sections, we will discuss the features and benefits of
mobile containers.

4.1.1 Container Features

As mobile enterprise applications become mainstream, the complexity of
smart clients grows. For example, fully commercial applications often re-
quire features such as user login, logging, transaction, and transparent data
access. Without proper tools for code and service reuse, mobile developers
have to duplicate those functionalities for every smart client. Wasting time
reinventing the wheel is not only inefficient but also causes error-prone code.

“Book” — 2003/9/26 — 22:51 — page 53 — #79

Section 4.1. Container-Managed Applications 53

Containers in J2EE

Containers are central to the serverside Java technologies (J2EE). For example,

the core value proposition of the popular Enterprise JavaBean (EJB) technol-

ogy lies in EJB containers that automatically take care of security, transaction,

logging, synchronization, persistence, and many crosscutting application con-

cerns. The EJB developers can focus on coding the value-added core business

logic. The result is much better software and drastically improved developer

productivity. Years of intensive research in J2EE have developed many ad-

vanced techniques to design and implement software containers.

Hence, it makes sense to make those common features available as services
in software containers that run on mobile devices. An advanced container
usually provides the following functionalities.

• Self-contained applications: Applications run inside the container are
self-contained with portable code and necessary configuration files.
The interdependence of applications and library components could be
managed by the container. Examples are the WAR files for servlet
containers and EAR files for EJB containers.

• Life-cycle management: By calling the life-cycle methods defined in
the container framework and implemented by all applications, the con-
tainer can install, start, stop, update, and delete any application pro-
grammatically or through an interactive console.

• Application services: The container provides services that are com-
mon to all applications. For example, an authentication module in the
container could allow all applications to authenticate against a single
password database.

• Custom services: The container should also allow its applications to
offer services to each other. That encourages code reuse and prompts
architectures for layered and modularized applications.

In this book, we use the term container rather loosely. Our containers do
not impose arbitrary boundaries for API usages. Applications installed inside
the container can transparently access any Java or native API available on
the device. These containers are often known as frameworks. The container
architecture on J2ME mobile devices is illustrated in Figure 4.1.

“Book” — 2003/9/26 — 22:51 — page 54 — #80

54 Managed Smart Clients Chapter 4

Device Hardware

Native OS (e.g. PocketPC or Embedded Linux)

Java runtime (e.g. J2ME)

Logging

Preference

Service

tracker

User

admin

Managed

Applications

and Services

Container

Many other

services

Figure 4.1. The container architecture for J2ME smart clients.

4.1.2 Benefits of Containers

The above container features translate to real benefits in mobile development
projects:

• Reduced code redundancy: Since the common services are not repeat-
edly implemented, we can reduce overall footprint and potential num-
ber of errors while improving the developer productivity.

• Managed update: When we fix a bug or add a new feature in a ser-
vice, all applications that use it automatically get the update. Some
containers support service versioning for more refined controls.

• Support for multitiered application models: Services in a container offer
natural separations between application tiers (e.g., the presentation
and business layers).

• Simplified application provisioning: Self-contained applications can be
easily deployed to any container. That enhances Java’s value proposi-
tion of “write once, run anywhere.”

Given these benefits, containers or frameworks are widely used in mobile
Java application development. In the next section, we introduce a standard
container specification for lightweight mobile devices: the OSGi specification.

“Book” — 2003/9/26 — 22:51 — page 55 — #81

Section 4.2. OSGi Containers 55

Note

Every MIDP device comes with the AMS container for provisioning,
security, and life-cycle management. However, the MIDP platform
is too resource-constrained to run any more advanced containers.
As a result, the containers we discuss in this chapter require at least
J2ME/CDC or PersonalJava runtimes.

4.2 OSGi Containers

The OSGi Alliance is an industry consortium that creates open standard
specifications for network-delivered services. Founded in March 1999, OSGi
is a nonprofit organization with open membership. Its board of directors
includes Acunia, BMW, Deutsche Telekom, Echelon, Gatespace, IBM, Mo-
torola, Oracle, Philips, ProSyst, Samsung, Sun and Telcordia. The OSGi
specification defines the mobile container framework and standard container
services as Java APIs that span from J2ME to J2SE to J2EE.

The OSGi Service Platform Release 2 specification was released in Oc-
tober 2001. It has been widely adopted by vendors and has many imple-
mentations. The OSGi Service Platform Release 3 specification was made
available in March 2003. The IBM Services Management Framework (SMF)
v3.5 is targeted to be OSGi R3 compatible. It is available for free evaluation
from the IBM Web site (see “Resources”). We discuss both Release 2 and 3
in this chapter. However, all examples are written for and tested on Release
2 containers.

Note

Despite the term Gateway in its name, the OSGi specification does
not define any particular kind of gateway servers. It defines a frame-
work for service components delivery and execution. The OSGi con-
tainer provides the runtime environment for those services. Gateway
server is only one of OSGi’s application areas.

4.2.1 Bundles

OSGi applications are packaged as bundles, which are just standard JAR
files. The OSGi bundle is completely self-contained with all the necessary
metadata in its manifest file. The OSGi container completely manages the
bundle life cycle:

“Book” — 2003/9/26 — 22:51 — page 56 — #82

56 Managed Smart Clients Chapter 4

• Install, update, and uninstall the bundle.

• Start and stop the bundle.

• Register, unregister, and track services in the bundle.

The bundle management interfaces are defined in the org.osgi.framework
package. Since the bundles can be deployed to the container dynamically
without restarting the container, the OSGi platform is an ideal choice for
mobile application provisioning clients. It allows applications to be managed,
tracked, and updated throughout its lifetime.

4.2.2 Standard Services

The OSGi container provides common crosscutting services such as device
drivers, user preferences, and logging to all its bundles. Table 4.1 lists the
OSGi services defined in OSGi Service Platform Release 2 specification. The
new OSGi Service Platform Release 3 specification defines more services,
some of which are of great importance to mobile applications. Those new
services are listed in Table 4.2.

4.2.3 Bundle Interaction and Custom Services

The OSGi framework provides powerful ways for bundles to interact with
each other. This encourages code reuse and makes it easier to architect
complex multilayer applications. For example, the OSGi container on a
stock trader’s PDA might be provisioned with services bundles from ma-
jor exchanges. Each bundle knows how to run real-time queries and execute
trades in a specific exchange market, and it makes those functionalities avail-
able to other bundles. The trader can then deploy the actual trading client
bundle, which provides a user interface, supports custom trade logic, and ex-
ecutes the query/trade through the individual service bundles. The possible
interactions among bundles are as follows.

• Static sharing: The OSGi container runs on a single JVM instance
but has a different classloader for each bundle. That means bundle
namespaces are separate. We cannot directly access objects or classes
in another bundle by default. However, a bundle can explicitly export
some of its Java packages through the Export-Package attribute in its
manifest file. It can also import Java packages exported by others
using the Import-Package manifest attribute. The export and import
features allow direct sharing of Java packages.

“Book” — 2003/9/26 — 22:51 — page 57 — #83

Section 4.2. OSGi Containers 57

Table 4.1. OSGi Services in OSGi Service Platform Release 2 Specification

(org.osgi.*)

Java package Description

service.http The HTTP service responds to HTTP requests. The
service listens on ports specified in the container con-
figuration. It dispatches each HTTP request to a
handling servlet based on an URL-to-servlet mapping
table registered by individual bundles. Finally, it re-
turns the servlet’s response to the HTTP requester.
The service also handles HTML content without the
help of a servlet.

service.device The device service manages custom device adaptors.
It allows bundle developers to plug in device drivers
and develop algorithms to match devices to drivers.
This service allows the OSGi bundles to respond to
many different types of client devices.

service.prefs The preference service manages a hierarchical collec-
tion of preference data resembling the JDK v1.4 pref-
erence API. It is much more advanced than simple
Java property files.

service.useradmin The user administration service provides role-based
authorization service. It manages user credentials and
user groups.

service.permissionadmin The permission service allows operators to manage
bundle permissions.

service.packageadmin The package administration service manages Java
packages exported by bundles (see Section 4.2.3 for
exported packages).

service.metatype The metatype service provides a mechanism for bun-
dles to expose their configuration metadata.

service.cm The configuration manager service administrates bun-
dle configurations.

service.log The logging service logs messages during the bundle
execution. We can extend the basic logging service
interface for custom logging needs.

util.tracker The ServiceTracker class in this package provides
easy ways to use and manage the container’s service
registry.

“Book” — 2003/9/26 — 22:51 — page 58 — #84

58 Managed Smart Clients Chapter 4

Table 4.2. New OSGi Services in OSGi Service Platform Release 3 Specifica-

tion (org.osgi.*)

Java package Description

service.startlevel A policy service that allows the developer to specify the
startup and shutdown sequence of bundles.

service.url This service allows bundles to register URL schemes with
content types and provide content handlers for the regis-
tered types.

util.xml This is a utility service that allows bundles to use JAXP,
SAX, and DOM XML parsers. Each parser interface can
have multiple implementations.

service.wireadmin It supports a convenient way to connect data producers
and consumers. Two utility classes are commonly used
with the wireadmin service to handle measurement-related
(e.g., error calculation and unit conversion) and position-
related (location, speed, orientation) data.

service.io This service allows bundles to handle arbitrary network
protocols using the J2ME Generic Connection Framework
(GCF). Since the GCF is a layered and abstract frame-
work, bundles only need to extend the abstract connection
factory to return the correct connection class based on the
URL string format.

service.upnp This service makes OSGi bundles transparently available
to universal plug-and-play networks.

service.jini This service allows OSGi bundles to interact with Jini net-
work services.

• Dynamic services: In addition to standard services provided by the
container, any bundle can consume and provide services from/to other
bundles at the same time:

1. A bundle can dynamically register (or unregister) services with
the container. The bundle needs to register the service interface
with a concrete implementation class. Any change to the service
(register, modify, unregister) will result in framework events that
could be captured and processed.

“Book” — 2003/9/26 — 22:51 — page 59 — #85

Section 4.3. A Simple Echo Service Example 59

2. Another bundle finds the service reference through a lookup API
in the framework. It calls a framework method to obtain the
service implementation object from the service provider bundle.
The service object is now ready to use.

The interacting bundles allow us to deliver reusable services to any OSGi
node, from the high function grid to pervasive devices.

4.2.4 OSGi Runtime Requirements

Currently, different OSGi vendors have different requirements for their prod-
ucts. The required execution environments range from PersonalJava v1.1
to J2SE. This has created considerable confusion in the developer commu-
nity. In an effort to standardize the runtime requirements, the OSGi Ser-
vice Platform Release 3 specification formally defines the following runtime
environments:

• The Java 2 Micro Edition: All OSGi implementations should run under
the CDC v1.0 plus Foundation Profile v1.0 runtime environment.

• The OSGi minimum execution environment: The specification also de-
fines a subset of CDC/FP APIs, which allows devices not powerful
enough for the CDC/FP (e.g., Palm PDAs) to run the OSGi frame-
work. The OSGi minimum execution environment is defined to be a
proper subset of CDC/FP and J2SE.

The standard execution environments make it easier for developers, espe-
cially resource-conscious mobile developers, to choose the right OSGi
product.

4.3 A Simple Echo Service Example

In this section, we first introduce a J2ME-compatible OSGi implementation
from IBM. Using a simple echo example, we demonstrate how to implement
bundles and share services among them.

4.3.1 The IBM Service Management Framework

The IBM SMF is a readily available OSGi implementation. It has a memory
footprint of 3 MB and runs on both execution environments defined in the
OSGi Service Platform Release 3 specification. IBM supports the J2ME en-
vironments through WME (WebSphere Micro Environment JVM) and the

“Book” — 2003/9/26 — 22:51 — page 60 — #86

60 Managed Smart Clients Chapter 4

minimum execution environment through WCE (WebSphere Custom Envi-
ronment JVM) products. It can be tightly integrated into IBM’s WebSphere
Studio Device Developer IDE. The SMF product versions we cover in this
book are v3.1 for OSGi R2 and v3.5 for OSGi R3.

The SMF installation process varies among devices. It generally involves
the following steps.

1. Download and unpack the SMF toolkit from IBM.

2. Copy the following directories and files to the target device (or to a local
execution directory, if you want to run SMF on a desktop computer).
For my PocketPC device, I put all four items under the device root
directory.

• The jarbundles directory contains installed bundles.

• The smf.jar file provides implementation classes for the OSGi
specification.

• The smfconsole.jar file provides a command-line management con-
sole for the container.

• The smf.properties file specifies the runtime configuration.

3. Make sure that the com.ibm.osg.smf.bundledir property in the
smf.properties file points to the correct bundle directory. For
example,

com.ibm.osg.smf.bundledir=jarbundles

4. Now we can start the SMF console using the following command (in
one line) or its equivalent on the device platform.

java -classpath "smf.jar:smfconsole.jar"

com.ibm.osg.smf.SMFLauncher -console "launch"

For my PocketPC device with IBM WebSphere Micro Environment
preinstalled, I use the following command (in one line). Please refer
to the Appendix B for the steps to install the IBM J2ME runtimes on
PDA devices.

"\WSDD\j9.exe" -jcl:foun

"-Xbootclasspath:\WSDD\lib\jclFoundation\classes.zip;

\smf.jar;\smfconsole.jar" "com.ibm.osg.smf.SMFLauncher"

-console "Launch"

“Book” — 2003/9/26 — 22:51 — page 61 — #87

Section 4.3. A Simple Echo Service Example 61

After the SMF console is started, it loads all currently installed bundles
into the container and presents the user a command-line interface for man-
agement tasks. For a complete list of management commands, please refer
to the SMF manual. Figure 4.2 shows the command-line console on desk-
top and PocketPC devices. Table 4.3 lists some of the most frequently used
commands.

Figure 4.2. The SMF console on desktop and PocketPC devices.

In the next two sections, we describe how to create and deploy two OSGi
bundles: The EchoService bundle exposes an echo service; the EchoUICon-
sumer bundle presents a simple GUI client and uses the EchoService in the
container to echo user input. Figures 4.3 and 4.4 show the two bundles in
action in J2SE and J2ME OSGi containers. Figure 4.5 shows user interactive
OSGi bundles.

4.3.2 The EchoService Bundle

The EchoService bundle demonstrates how to implement and register a ser-
vice in an OSGi bundle. The service itself is extremely simple: It only defines
one method that does nothing more than echo a string input. The steps to
create the bundle are as follows.

1. Define the service interface as a Java interface (Interface EchoService,
Listing 4.1).

“Book” — 2003/9/26 — 22:51 — page 62 — #88

62 Managed Smart Clients Chapter 4

Table 4.3. Common Commands Available in the SMF Console

Command Description

install url Installs a bundle from a URL and returns a bundle ID. The
URL could point to files on the local file system, such as
file:/path/bundle.jar.

update id Updates the package from the same URL as specified by the
install command.

uninstall id Uninstalls the bundle.

start id Starts the bundle.

stop id Stops the bundle.

bundle id Displays information about an installed bundle.

status Displays all installed bundles and registered services.

packages Displays the imported and exported packages for each bundle.

close Shuts down the container and exits the console.

2. Create an implementation class for the interface (Class EchoserviceImpl,
Listing 4.2).

3. Create a BundleActivator class that implements the required OSGi life-
cycle methods and registers the service with the container upon startup
(Class EchoActivator, Listing 4.3).

4. Create a manifest file that specifies the BundleActivator class for this
bundle and exports the service interface package (Listing 4.4). The
OSGi container uses the manifest to find the entry point of the bundle
and collect necessary configuration data.

5. Package the compiled classes and manifest file into a standard Jar file.

Listing 4.1. The EchoService interface

package com.enterprisej2me.osgi.echoservice;

public interface EchoService {

public String echo (String s);

}

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 63 --- #89

Section 4.3. A Simple Echo Service Example 63

Figure 4.3. The echo bundles in action in J2SE.

Figure 4.4. The echo bundles in action in J2ME.

Listing 4.2. The EchoServiceImpl class

package com.enterprisej2me.osgi.echoserviceimpl;

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 64 --- #90

64 Managed Smart Clients Chapter 4

Device Hardware

Native OS (e.g. PocketPC or Embedded Linux)

OSGi compatible Java runtime (J2ME or J2SE)

Logging
 Preference

Service

tracker

User

admin

Application and service

bundles

UI

OSGi

User

Figure 4.5. OSGi bundles with UIs.

import com.enterprisej2me.osgi.echoservice.*;

public class EchoServiceImpl implements EchoService {

EchoServiceImpl () { }

public String echo (String s) {

return s;

}

}

Listing 4.3. The EchoActivator class

package com.enterprisej2me.osgi.echoserviceimpl;

import org.osgi.framework.*;

import com.enterprisej2me.osgi.echoservice.*;

public class EchoActivator implements BundleActivator {

private ServiceRegistration reg;

public EchoActivator () { }

“Book” — 2003/9/26 — 22:51 — page 65 — #91

Section 4.3. A Simple Echo Service Example 65

public void start (BundleContext context) throws Exception {

EchoServiceImpl impl = new EchoServiceImpl ();

reg = context.registerService (

EchoService.class.getName(), impl, null);

}

public void stop (BundleContext context) throws Exception {

reg.unregister ();

}

}

Listing 4.4. The JAR manifest for the echo service bundle

Manifest-Version: 1.0

Bundle-Name: Echo service

Bundle-Description: Echo the input

Bundle-Activator: com.enterprisej2me.osgi.echoserviceimpl.EchoActivator

Import-Package: org.osgi.framework; specification-version=1.1

Export-Package: com.enterprisej2me.osgi.echoservice

Export-Service: com.enterprisej2me.osgi.echoservice.EchoSerivce

Now, we can install and start the package in our SMF console.

4.3.3 The EchoUIConsumer Bundle

The EchoUIConsumer bundle is created to demonstrate how to use the echo
service through the framework:

1. Create a BundleActivator implementation as the entry point to the bun-
dle (Class EchoUIConsumer, Listing 4.5).

2. In the EchoUIConsumer.start() method, create and open a ServiceTracker
object to track the echo service we started.

3. Create the UI frame class EchoFrame (Listing 4.6) and pass the Service-
Tracker object and the current bundle (i.e., the echo consumer bundle)
to EchoFrame.

4. The EchoFrame object obtains the EchoService object from the Ser-
viceTracker and uses the EchoService to echo any user input. When
we hit the Exit button in the UI frame, the AWT event handler calls

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 66 --- #92

66 Managed Smart Clients Chapter 4

the bundle’s stop() method and triggers the container to invoke the
EchoUIConsumer.stop() method. For more details, refer to method ac-
tionPerformed() in Listing 4.6.

5. In the EchoUIConsumer.stop() method, dispose the UI frame and close
the ServiceTracker (Listing 4.5).

6. Create the manifest file (Listing 4.7). We import the package contain-
ing the EchoService interface here.

7. Package and deploy the JAR bundle.

Tracking the Services
In the service consumer bundles, we could manually look up the service ob-
jects from the framework. Then, we would have to register event listener and
callback methods to handle situations when other bundles or the container it-
self changes those services (e.g., removes the service). This could be a tedious
task. Instead, we take a shortcut and use a pair of ServiceTracker objects to
automatically track those services.

The ServiceTracker object tracks a list of services meeting certain criteria
passed to it in the constructor. It provides default event handlers for the
services it tracks.

The ServiceTracker object can be instantiated with a ServiceTrackerCus-

tomizer object. When a service in the tracker is added, modified, or deleted,

the appropriate method in its associated ServiceTrackerCustomizer is called. For

more usage examples of the ServiceTracker class, please refer to Section 4.4.

Listing 4.5. The EchoUIConsumer class

package com.enterprisej2me.osgi.echouiconsumer;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

import com.enterprisej2me.osgi.echoservice.*;

public class EchoUIConsumer implements BundleActivator {

ServiceTracker echoTracker;

EchoFrame frame;

public EchoUIConsumer () { }

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 67 --- #93

Section 4.3. A Simple Echo Service Example 67

public void start (BundleContext context) {

echoTracker = new ServiceTracker (context,

EchoService.class.getName(), null);

echoTracker.open ();

frame = new EchoFrame(250, 250, echoTracker, context.getBundle());

}

public void stop (BundleContext context) {

frame.dispose ();

echoTracker.close();

}

}

Listing 4.6. The EchoFrame class

package com.enterprisej2me.osgi.echouiconsumer;

import java.awt.*;

import java.awt.event.*;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

import com.enterprisej2me.osgi.echoservice.*;

public class EchoFrame extends Frame

implements WindowListener, ActionListener {

private TextField entryText;

private Label echoedText;

private Button submit;

private Button exit;

private Panel content, top, bottom, middle;

private ServiceTracker echoTracker;

private Bundle echoUIConsumerBundle;

public EchoFrame (int width, int height,

ServiceTracker t, Bundle b) {

super ("Echo UI");

setBounds(0, 0, width, height);

echoTracker = t;

echoUIConsumerBundle = b;

entryText = new TextField (20);

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 68 --- #94

68 Managed Smart Clients Chapter 4

echoedText = new Label (" ");

submit = new Button ("Echo");

exit = new Button ("Exit");

submit.addActionListener (this);

exit.addActionListener (this);

top = new Panel ();

middle = new Panel ();

bottom = new Panel ();

top.setLayout(new FlowLayout(FlowLayout.LEFT));

top.add(new Label("Echo: "));

top.add(echoedText);

middle.setLayout(new FlowLayout(FlowLayout.LEFT));

middle.add(new Label("Input: "));

middle.add(entryText);

bottom.setLayout(new FlowLayout(FlowLayout.CENTER));

bottom.add(submit);

bottom.add(exit);

content = new Panel ();

content.setLayout(new GridLayout(3, 1));

content.add(top);

content.add(middle);

content.add(bottom);

add (content);

addWindowListener(this);

pack ();

setVisible (true);

}

public void actionPerformed (ActionEvent e) {

if (e.getSource() == submit) {

top.remove (echoedText);

// Obtain the echo service object

EchoService echoObj = (EchoService) echoTracker.getService();

// Use the echo service to echo a string

echoedText = new Label (echoObj.echo(entryText.getText()));

top.add (echoedText);

entryText.setText("");

setVisible (true);

} else if (e.getSource() == exit) {

// see note

“Book” — 2003/9/26 — 22:51 — page 69 — #95

Section 4.3. A Simple Echo Service Example 69

// echoUIConsumerBundle.stop();

dispose ();

}

}

public void windowClosing(WindowEvent e) {}

public void windowOpened(WindowEvent e) {}

public void windowClosed(WindowEvent e) {}

public void windowIconified(WindowEvent e) {}

public void windowDeiconified(WindowEvent e) {}

public void windowActivated(WindowEvent e) {}

public void windowDeactivated(WindowEvent e) {}

}

Listing 4.7. The manifest file for the echo consumer bundle

Manifest-Version: 1.0

Bundle-Name: Echo UI consumer

Bundle-Description: Consume the echo service

Bundle-Activator: com.enterprisej2me.osgi.echouiconsumer.EchoUIConsumer

Import-Package: com.enterprisej2me.osgi.echoservice,

org.osgi.framework; specification-version=1.1,

org.osgi.util.tracker; specification-version=1.1

Import-Service: com.enterprisej2me.osgi.echoservice.EchoSerivce

Limitations of the Bundle State-Change APIs

Note that when we exit the EchoFrame UI, it merely disposes the UI window

but does not stop the underlying bundle. That is because the synchronous

state-change APIs in the current OSGi specification do not allow a bundle to

change its own state safely. This limitation is being addressed by the OSGi

expert group. When it is resolved in a future OSGi edition, the EchoFrame

exit event handler can simply call the echoUIConsumerBundle.stop() method to

dispose the window and stop the bundle.

“Book” — 2003/9/26 — 22:51 — page 70 — #96

70 Managed Smart Clients Chapter 4

The Espial DeviceTop

The Espial DeviceTop is an OSGi implementation running on PersonalJava

platforms. In addition to standard OSGi services, it provides an applica-

tion service that supports bundles with GUIs. The bundle’s BundleActivator

class can extend the espial.devicetop.refui.Application class, which automatically

takes care of the interactions between the UI frame and the bundle itself. With

Espial’s proprietary Espresso UI library, we can create sophisticated mobile UI

applications on the DeviceTop framework.

4.4 Smart Client with HTTP Front End

The managed GUI bundle uses only a fraction of the power provided by the
OSGi container. Through its services, the OSGi container supports external
applications and devices over the network. To use a separate program to
render the UI, we can more effectively separate the business and presentation
layers.

The “pizza order” example application distributed with the SMF illus-
trates the use of HTTP services in the OSGi framework. After starting the
bundle from the SMF console, we can launch the device’s built-in HTML
browser (Internet Explorer for PocketPC or the Opera browser for Embed-
ded Linux) and point the URL to http://localhost/pizza. An HTML page of
a dummy pizza store appears. We can fill out the pizza order form, submit
the form, and get response from a servlet running inside the bundle. The
screen flow is shown in Figure 4.6.

This design allows us to build a simple UI very quickly, using HTML
without messaging with complex event handlers in AWT code. It also allows
the vast majority of serverside Java developers to transfer their skills and
make use of their familiar patterns, such as the Model-Viewer-Controller
pattern. The overall architecture of the smart client with HTTP front end
is illustrated in Figure 4.7.

4.4.1 The Pizza Order Bundle

The PizzaBundle class (Listing 4.8) implements the BundleActivator interface.
This bundle does not register or provide any new services. It customizes the
container HTTP service to serve pizza order HTML content at a specified
URL. It also uses the container logging services to record activities inside
the bundle. If no logging service has been registered for this bundle, it logs
to the standard output.

“Book” — 2003/9/26 — 22:51 — page 71 — #97

Section 4.4. Smart Client with HTTP Front End 71

Start the Pizza

HTTP service

Access the service from

Pocket IE

Figure 4.6. The pizza order application in action.

Device Hardware

Native OS (e.g. PocketPC or Embedded Linux)

OSGi compatible Java runtime (J2ME or J2SE)

Logging
 Preference

Service

tracker

User

admin

Application and service

bundles

OSGi
 User

B

R

O

W

S

E

R

HTTP

service

Figure 4.7. The smart client with HTTP front end.

1. The bundle start() method instantiates trackers for LogService and
HttpService. The bundle then invokes their open() methods.

2. When the ServiceTracker for the HttpService is opened, it obtains all
registered HttpService references from the container, adds them into
the tracker, and invokes the corresponding ServiceTrackerCustomizer’s
addingService() method for each added reference.

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 72 --- #98

72 Managed Smart Clients Chapter 4

3. The addingService() method obtains the HTTP service object from
the container and customizes it with the pizza order servlet and other
resources.

4. When the bundle stops, its stop() method calls the close() methods
of the two ServiceTrackers. The HttpService tracker in turn calls the
removedService() method, which unplugs the servlet from the HTTP
service.

Listing 4.8. The PizzaBundle class

public class PizzaBundle implements

BundleActivator, ServiceTrackerCustomizer {

/** BundleContext for this bundle */

protected BundleContext context;

/** Log Service wrapper object */

protected LogTracker log;

/** Http Service tracker object */

protected ServiceTracker tracker;

/** HttpContext for HTTP registrations */

protected HttpContext httpContext;

//

public PizzaBundle() { }

// Methods in BundleActivator

public void start(BundleContext context) throws Exception {

this.context = context;

httpContext = new HttpContext() { };

log = new LogTracker(context, System.err);

tracker = new ServiceTracker(context,

HttpService.class.getName(), this);

tracker.open();

}

public void stop(BundleContext context) throws Exception {

tracker.close();

log.close();

“Book” — 2003/9/26 — 22:51 — page 73 — #99

Section 4.4. Smart Client with HTTP Front End 73

}

// Methods for ServiceTrackerCustomizer

public Object addingService(ServiceReference reference) {

HttpService http = (HttpService)context.getService(reference);

if (http != null) {

try {

http.registerServlet(servletURI,

new Pizza(), null, httpContext);

http.registerResources(servletURI+imagesURI,

imagesURI, httpContext);

log.log(log.LOG_INFO, "Pizza Servlet registered");

} catch (Exception e) {

// handle the exception

}

}

return http;

}

public void modifiedService(ServiceReference

reference, Object service) {

}

public void removedService(ServiceReference

reference, Object service) {

HttpService http = (HttpService) service;

http.unregister(servletURI);

http.unregister(servletURI+imagesURI);

context.ungetService(reference);

log.log(log.LOG_INFO, "Pizza Servlet unregistered");

}

}

4.4.2 The Pizza Order Servlet

In the addingService() method, we use a servlet Pizza (Listing 4.9) to provide
the custom HTTP service (the application logic). This is just a standard Java
servlet that reads from HttpRequest and writes HTML data to HttpResponse
objects. Those HTTP context objects are provided by the container.

“Book” — 2003/9/26 — 22:51 — page 74 — #100

74 Managed Smart Clients Chapter 4

Listing 4.9. The Pizza servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class Pizza extends HttpServlet {

protected void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

// Generate some output

res.setContentType("text/html;" + "charset=iso-8859-1");

PrintWriter out = res.getWriter();

out.print(" ");

// Get query parameters

String queryString = req.getQueryString();

// any pizza order logic

//

out.println("</body></html>");

}

}

4.4.3 The Logging Service

A container can have multiple logging services. For example, one service
implementation could log messages to a disk file while another could send
the critical message as Instant Message alerts to administrators. The OSGi
framework provides a common LogService interface for all logging services.
Implementations of the LogService interface are provided and shared by in-
dividual bundles. In our pizza example, the LogTracker (Listing 4.10) object
is a ServiceTracker object that tracks all available logging services from the
container registry and makes sure each message is logged by all services.

1. The LogTracker.open() method is invoked in the bundle start() method
to initiate the tracker.

2. LogTracker.open() calls its base class’s open() method, which obtains
all LogService references in the container.

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 75 --- #101

Section 4.4. Smart Client with HTTP Front End 75

3. When the bundle needs to log a message, it calls the LogTracker.log()
method, which iterates through the current list of tracked LogService
references. It obtains the service object for each reference and pushes
the message to all available logging services.

4. If the container does not have any registered logging service (the refer-
ence list size is zero), the LogTracker object will call its noLogService()
method to log to the standard output.

Note

The LogTracker class does not register any new LogService to the
container.

Listing 4.10. The LogTracker class

public class LogTracker

extends ServiceTracker implements LogService {

protected final static String clazz =

"org.osgi.service.log.LogService";

protected PrintStream out;

public LogTracker(BundleContext context, PrintStream out) {

super(context, clazz, null);

this.out = out;

open();

}

// Implements various log() messages with

// different signatures.

//

public synchronized void log(ServiceReference reference,

int level, String message, Throwable exception) {

ServiceReference[] references = getServiceReferences();

if (references != null) {

int size = references.length;

for (int i = 0; i < size; i++) {

LogService service = (LogService) getService(references[i]);

if (service != null) {

‘‘Book’’ --- 2003/9/26 --- 22:51 --- page 76 --- #102

76 Managed Smart Clients Chapter 4

try {

service.log(reference, level, message, exception);

} catch (Exception e) { }

}

}

return;

}

noLogService(level, message, exception, reference);

}

protected void noLogService(int level, String message,

Throwable throwable, ServiceReference reference) {

if (out != null) {

synchronized (out) {

switch (level) {

case LOG_DEBUG: {

out.print("Debug: ");

break;

}

case LOG_INFO: {

out.print("Info: ");

break;

}

case LOG_WARNING: {

out.print("Warning: ");

break;

}

case LOG_ERROR: {

out.print("Error: ");

break;

}

default: {

out.print("Unknown Log level[");

out.print(level);

out.print("]: ");

break;

}

}

out.println(message);

if (reference != null) {

out.println(reference);

}

if (throwable != null) {

throwable.printStackTrace(out);

}

“Book” — 2003/9/26 — 22:51 — page 77 — #103

Section 4.5. Mobile Gateways 77

}

}

}

}

4.4.4 Rich UI Clients for the HTTP Service

Although the pizza order example supports clearly separated application
layers, the drawback is that it does not really take advantage of the rich UI
capability of smart clients. There are several ways to create rich UI clients
for the HTTP service.

• Rich browsers: Instead of plain HTML content, the servlet can provide
rich content such as Java Applet and Flash for capable browsers.

• Standalone GUI: We can also replace the browser completely with a
standalone GUI application. The OSGi HTTP service can serve binary
or XUL (XML User Interface) content and allow the standalone GUI
front end to decide how to render it.

4.5 Mobile Gateways

In the previous sections, we discussed service and application bundles in
clientside OSGi containers. Besides clientside containers, another major ap-
plication area of the OSGi framework is to deploy and execute services on
mobile gateway devices that do not have UI front ends. Small, pervasive
devices delegate computationally expensive tasks to the more powerful gate-
way. In the gateway configuration, the OSGi powered hub provides services
to a variety of devices:

• The Jini service (service.jini) allows us to incorporate an OSGi-based
gateway into a Jini network. For example, the gateway can drive a Jini
printer over the local WiFi network to print out a pizza order receipt.

• The UPnP service (service.upnp) allows an OSGi-based gateway to in-
teract with UPnP network devices.

• The HTTP service (service.http) we discussed earlier is available to
any HTTP-compatible devices. For example, MIDP-based or browser-
based devices on the local WiFi network can order pizza through the
OSGi HTTP service on the gateway device.

“Book” — 2003/9/26 — 22:51 — page 78 — #104

78 Managed Smart Clients Chapter 4

• The OSGi container also provides a generic device access service
(service.device) that allows developers to plug in device drivers for ar-
bitrary devices and network protocols.

The architecture is illustrated in Figure 4.8. But still, why do we need to
run gateways in OSGi containers? Wouldn’t a full-blown J2EE portal server
be a much more powerful option? There are two important reasons.

• Since OSGi containers run on J2ME, we can place the OSGi-based
gateway in the same mobile network as the pervasive devices it serves.
For example, in an in-hand network, the PDA can be the gateway;
in an in-home network, the TV-set top box is the gateway; in an in-
car network, the entertainment console could be the gateway. Since
the local wireless network is much faster, cheaper, and easier to main-
tain compared with national cellular networks, the local gateways are
crucial to enable high-availability mobile applications.

• The OSGi specification supports dynamic service provisioning and de-
ployment through bundles. This is a very important feature when you
have thousands of mobile gateways around in your company.

OSGi

based

gateway

B

u

n

d

l
e

s

D

a

t

a

Jini network

UPnP network

Other local wireless

network

Figure 4.8. The OSGi-based local gateway architecture.

“Book” — 2003/9/26 — 22:51 — page 79 — #105

Section 4.6. Summary 79

4.6 Summary

In this chapter, we discussed the benefits and architecture of managed smart
clients. We introduced the OSGi specification and IBM’s implementation:
the SMF. Through a simple echo example, we demonstrated how to build the
bundles, implement required life-cycle methods, import and export packages,
expose and consume bundle services, and add UIs to a bundle application.
The pizza order example shows how to reduce UI complexity and separate
application layers using the available HTTP service. The pizza order applica-
tion also demonstrates complex application service use and service tracking.
In the last section, we briefly introduced the architectures and benefits of
mobile gateways implemented over the OSGi platform.

Resources

[1] The Open Services Gateway initiative (OSGi). http://www.osgi.org/

[2] IBM WebSphere Studio Device Developer IDE (free evaluation). The
page also contains a link to download the latest IBM Service
Management Framework (SMF) software for free evaluation.
http://www.ibm.com/embedded/

[3] The Espial DeviceTop is a clientside OSGi container with GUI support.
http://www.espial.com/index.php?page=sol devices suite over

