
TheServerSide.com Page 1 Peter Pilgrim

Based on Expresso 4.0 Page 1 Best Practice with Expresso Framework

Published on TheServerSide.com

February 25, 2002

Over the last two years or so, server-side Java technology has surpassed the popularity of client-
side Java. Many developers started way back in the day with simple Applets, which are embedded Java
programs inside a browser; then, Sun invented Java Servlets. The technology moved from the HTTP
client side to the HTTP server side. Java Servlets were interesting but too cumbersome for professional
web designers to create content with: they could not easily get a look inside. Thus, Java Server Pages
were created to turn Servlet technology inside out. JSP solved the creative presentation problem, but
introduced architectural building problems.

As far as I am concerned, the ‘war of MVC’ has been won in the last two years. After the arrival of
Java Server Pages technology, we have seen a great leap forward in the overall architectural design of
web applications. The page-centric model has proven adequate for the most basic web applications, but
as soon as developers have to write more complex business applications, the design falters because the
Java Server Pages are heavily coupled with each other. Of course this severely handicaps our ability to
maintain software. Consequently, many developers have adopted a pattern from Smalltalk
programming, the Model View Controller. We now had a choice, learn to use someone else’s MVC
framework or develop our own. Do we really want to write our framework from scratch? Does any one
out there still have a lot of time of their hands?

One of the features of Java that originally attracted me was the abundance of libraries or APIs
contained within the actual software development kit itself. It meant that as a Java developer, you
didn’t have to reinvent the wheel. You did not have to write your own Vector class or your own
Graphics event handling. It was all there, of course, in the SDK. For web applications, until recently,
there were no third-party libraries or API implementing Model View Controllers. There are now many
such toolkits or frameworks, including:

• Barracuda

• Tapestry

TheServerSide.com Page 2 Peter Pilgrim

Based on Expresso 4.0 Page 2 Best Practice with Expresso Framework

• Enhydra XMLC

• Expresso

• Jakarta Struts

Expresso Framework, until version 3, recently had its own Model View Controller engine. However,
during year 2001 a clear overall winner in the war of MVC had been declared: Jakarta Struts. The
popularity of Jakarta Struts is evident by its appearance and description in several articles and at least
two well-known books. There are also many people subscribed to the struts-user mailing lists, which
seem to be as over-subscribed to as the JSP-interest mailing list. By adopting Struts, developers reduce
the amount of code that needs to be written for a web application and since The Expresso Framework
integrates Struts, it further reduces the amount of code that developers need to write. As well as having
an MVC framework, Struts also has its own powerful custom tag actions. Custom tag libraries and their
powerful bean introspection core further reduce the total amount of Java scriptlets in Java Server
Pages.

 The current economic climate is very weak and the field of information technology is suffering from
widespread budget cuts and declining confidence in e-commerce. This invariably means that
developers have far less time and resources to complete their projects. Unfortunately, the ready-made
web application is still just beyond on the horizon. Fortunately, frameworks have been written which
solve the denigrating aspects of writing web applications, such as handling user login profiles, security,
MVC, and database object mapping. Each framework is obviously different and each has it’s own
strengths and weaknesses. There is no standard available.

Expresso is one such framework from JCorporate. I do not work for JCorporate, or have any sort of
interests with them whatsoever apart from using and developing with their open-source software.
Neither am I here to start a war of words, infractions, over which one of these toolkits is the
penultimate framework. You can find the various attractors and detractors for each one elsewhere such
as in the archives of the heavily subscribed mailing list jsp-interest@java.sun.com.

Struts
Jakarta Struts is a lightweight framework that implements the Model View Controller pattern. Pure
Struts [not integrated with Expresso] has, at its centre, its own action controller servlet that listens to
requests from the user’s browser and passes them on to special components called Actions. Each
Action represents a specific function of the web application. An Action is associated usually with a set
of forward paths and form beans. This association is called an ActionMapping, and thus a forward path
is also known as an ActionForward. An action processes the incoming HTTP servlet request and then
either generates the HTTP servlet response or it names a suitable Struts action forward to pass the
request onto. Inside the action is where you will write the business logic of the application. The
advantage of the model is that it clearly separates the presentation rules from the business rules of the
task. You can make subtle changes to the overall look-and-feel of the web front end of the application,
without having to alter a single line of code that manages the business logic. Conversely, you can
change the business logic without affecting the presentation adversely, for example, if you change the

mailto:jsp-interest@java.sun.com

TheServerSide.com Page 3 Peter Pilgrim

Based on Expresso 4.0 Page 3 Best Practice with Expresso Framework

application’s database-design. Dividing the architecture into separate tightly coupled, but less cohesive
tiers is one of the goals of good software practice. I said that Struts was lightweight because it only
supplies the MVC framework and the custom tag actions in the overall API. Jakarta Struts does not
supply any additional features, such as user profile security, EJB, messaging, or an object to relational
database mapping.

Struts uses the concept of commands associated with a Java Beans, Struts Action. All contemporary
web applications provide some type of input using HTML Form elements. Struts buffers input from
HTML forms in Java Beans known as ActionForm beans. When Struts transfers processing to an
Action, if the action was not created already, it will cleverly instantiate the action. If the action has a
form bean associated with it, it will also instantiate the form bean, and populate the attributes with
values from any matching servlet request parameters. (This feature is not unlike the standard JSP action
<jsp:property name=”acmebean” property=”*” />.)

The Java Servlet API already allows you to forward to another JSP or to include another JSP. But the
problem with this is that programmers have generally hard-coded URLs into their programs, strongly
binding the Servlet to a JSP. This is not what you want to do really, because everyone knows that such
URLs are hard to maintain and support. Struts alleviates this problem. It offers the concept of an
ActionForward, allowing you to forward dispatch to a logical name instead. A forward is essentially a
logical name and URL path association.

TheServerSide.com Page 4 Peter Pilgrim

Based on Expresso 4.0 Page 4 Best Practice with Expresso Framework

Jakarta Struts is configured from an XML file and that is the genial concept of Struts. Action mappings
have logical names and so do action forwards. This means that presentation can be separated from the
implementation code. In fact, action form beans also have logical names. Action forwards can be local

TheServerSide.com Page 5 Peter Pilgrim

Based on Expresso 4.0 Page 5 Best Practice with Expresso Framework

to the action mapping or be global to the web application. The design of Struts is the secret of its
power. Enough of the theory let us now see the practice by just looking at an XML file:

<struts-config>

<form-beans>

<form-bean name="loginForm"

type="com.xenonsoft.jsp.beans.LoginForm " />

<form-bean name="dvdOrderForm"

type="com.xenonsoft.jsp.beans.DVDOrderForm " />

…

</form-beans>

<global-forwards>

<forward name="home" path="/index.jsp" />

<forward name="success" path="/hello.jsp" />

<forward name="failure" path="/error.jsp" />

<forward name="login" path="/login.jsp" />

<forward name="logout" path="/Logout.do?action=confirmLogout" />

…

</global-forwards>

<action-mappings>

<action path="/Login"

type="com.xenonsoft.jsp.actions.Login"

name="loginForm" scope="request"

validate="false" >

<forward name="success" path="/index.jsp"/>

</action>

<action path="/DVDOrder"

type="com.xenonsoft.jsp.actions.DVDOrder"

name="dvdOrderForm" scope="request"

validate="false" >

<forward name="promptForm" path="/prompt-DvdOrder.jsp"/>

<forward name="completed" path="/completed-DvdOrder.jsp"/>

…

</action>

</action-mappings>

</struts-config>

This is a whirlwind tour of Struts. For more information of the configuration details of the preceding
XML, please visit the Jakarta site directly.

TheServerSide.com Page 6 Peter Pilgrim

Based on Expresso 4.0 Page 6 Best Practice with Expresso Framework

 Those of you who have an interest in software patterns will recognize that Jakarta Struts is based on
the COMMAND delegation pattern, which is a special variation of the CHAIN OF RESPONSIBILITY
pattern. Because the purpose of the command pattern is to keep the presentation front-end separate
from the actions that they initiate, this makes Struts very useful for business web applications. The
master switch is, of course, the Struts ActionServlet, which serves as a controller, which in turn
invokes the referenced action mapping class. Additionally, Struts also supplies some generous in view
helper classes; these and custom action tags libraries are great for JSP development. Coverage of the
tag libraries is outside the of scope of this article.

For a feel of the Struts development process, it might help to look at some real simple code. Let us
quickly look at a typical ActionForm, which is really just a simple Java Bean that knows how to reset
itself and perform validation.

import org.apache.struts.action.*;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DVDOrderForm extend ActionForm {

protected String action="", productId="", productName="";

protected int quantity=0;

public DVDOrderForm() { super(); }

public String getAction() { return action; }

public void setAction(String a) { this.action = a; }

public String getProductId() { return productId; }

public void setProductId(String val) { this.productId = val; }

... // more accessor and mutators

public void reset(ActionMapping mapping, HttpServletRequest request)

{

super.reset(mapping, request);

action=""; productId=""; productName=""; quantity=0;

}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest
request)

{

ActionErrors errors = new ActionErrors();

TheServerSide.com Page 7 Peter Pilgrim

Based on Expresso 4.0 Page 7 Best Practice with Expresso Framework

if (quantity < 1)

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("error.form.field.moreThanZero",

"Quantity"));

... // more form input checking

return errors;

}

}

Struts instantiates the action form when the action mapping is first created for processing a request. It
will call the reset() method to return the form to the default settings. There is also a validate()
method, where each form attribute can be individually checked. Because Struts supports
internationalisation using resource bundle properties, the error messages can be returned in the
appropriate locale and territory. After populating the ActionForm bean, Struts passes control to the
action mapping. Here is an example of a proper Action.

import org.apache.struts.action.*;

import org.apache.struts.util.*;

import java.io.*;

import java.math.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DVDOrder extends Action {

public ActionForward perform(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException

{

Locale locale = getLocale(request);

MessageResources messages = getResources();

ActionErrors errors = new ActionErrors();

DVDOrderForm orderForm = (DVDOrderForm)form;

if (action.equalsIgnoreCase("promptForm")) {

// Set other form attribute here.

BigInteger price = businessLayer.getPrice(

"The Shawshank Redemption");

orderForm.setPrice(price);

return mapping.findForward("promptForm");

}

TheServerSide.com Page 8 Peter Pilgrim

Based on Expresso 4.0 Page 8 Best Practice with Expresso Framework

else if (action.equalsIgnoreCase("orderDVD")) {

businessLayer.orderDVD(

orderForm.getProductId(),

orderForm.getQuantity());

return mapping.findForward("completed");

}

else {

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("error.moarAction.action.unknown",

"DVDOrder", action));

return mapping.findForward("failure");

}

}

}

Although the example is slightly contrived, it illustrates the existence of a business layer tier. The
action mapping is, indeed, where the integration of the two tiers, takes place. Business processing such
as calculating the tax and the surplus charge (or seasonal discount) for a quantity of DVDs should
really take place in the business layer.. Also, pay notice to the fact that within pure Struts, you must
multiplex your own action commands. Because Struts is a lightweight framework you have to plumb
your own pipes, so to speak, in order to handle different states in the function of ordering a DVD:
“promptForm”, “completed” and “failure”. As we will see, Expresso can help out substantially here
and save real time and energy. All action components return either an ActionForward or a null, which
signifies that the action is returning its own custom HTTP response (e.g. binary content like a GIF
image or PDF file.) Action forwards can be local to the Action, global to the configuration file, or
created dynamically in the action. For the benefit of illustration, I have left out the exception handling
that is required for a proper business application.

Expresso Framework

Expresso Framework 4.0 is a large toolkit of classes. Getting started can be overwhelming because
there are so many classes [449 classes at last count] to look at. The frameworks can be divided
technically into four essential parts: schemas, database object persistence, controller design, and the
rest of the kit, which involves job control, utilities, etc. It is essential that you understand the first three
parts. Expresso Framework is also very much database-driven. That is, you will need to use a reliable,
scalable relational database to make full use of the kit. Mysql, Sybase, Oracle, DB2, and Postgresql are
all suitable candidates. I will demonstrate the best practice by describing a simple stock trading
program that displays the stock trades, and allows the user to buy and sell the stocks.

TheServerSide.com Page 9 Peter Pilgrim

Based on Expresso 4.0 Page 9 Best Practice with Expresso Framework

Schemas

Every Expresso application must have a schema. A schema is a bit of a misnomer, because it could
really be called a Web Application Context object. (If you search this document for the specific word
application, it will appear at least a dozen times. Perhaps this explains why they chose to name the
class something else.) The schema object defines all the database objects: controllers, servlets, job

TheServerSide.com Page 10 Peter Pilgrim

Based on Expresso 4.0 Page 10 Best Practice with Expresso Framework

handlers, and the user-defined preferences that are used
by your custom web application. The schema is a
placeholder; it uniquely defines the identity of your web
application. It describes the context of your web-enabled
program. It also allows the Expresso core to administer a
strict security matrix, in conjunction with the relational
database, to prevent unauthorised access to your
privileged program.

Let us now create a schema for our on-line stock trader,
which is called OrangeTrader, simply because that is
what the creative design team at said company came up
with in the marketing department.

import com.jcorporate.expresso.core.db.*;

import com.jcorporate.expresso.core.dbobj.Schema;

public class OrangeTraderSchema extends Schema

{

public OrangeTraderSchema() throws DBException

{

super();

try {

addDBObject("com.xenonsoft.orangetrader.ot1.dbobj.StockTrade");

addController(
"com.xenonsoft.orangetrader.ot1.controller.StockController");

}

catch (Throwable t) {

throw new DBException(t.getMessage());

}

}

public String getMessageBundlePath() {

return "com/xenonsoft/orangetrader";

}

}

This simple schema object has a default constructor that registers one single database object and one
controller that we use for the orange trader program. The method getMessageBundlePath() returns
the search path for a resource bundle, which later allows us to internationalise our application.

Expresso has around 449 classes spread over 75
directories. Here are my UNIX commands:

% cd

/opt/tomcat4.0/expresso/WEB-
INF/classes

% find com/jcorporate/expresso -
type f –name “*.java” -print | wc
–l

% find com/jcorporate/expresso -
type d -print | wc -l

TheServerSide.com Page 11 Peter Pilgrim

Based on Expresso 4.0 Page 11 Best Practice with Expresso Framework

Database Objects

For the on-line trading application, we create a persistent data object, which maps directly to a table in
our relational database. In Expresso, the object class DBObject provides the means to map a Java
object to a relational database. If your object extends this class, then it can write and read its data
persistently. Expresso provides another direct subclass of DBObject called SecuredDBObject that
secures a database object against a user profile. A secured database object can be restricted to a group
of users, or a single user. Database objects that extend SecuredDBObject are automatically secured
against a user profile with no further intervention required by the developer.

The stock trade program requires a simple table to hold the details of each stock, which are the stock’s
name, its current price, asking price, bidding price, and the percentage change. The StockTrade
object (see below), sets this up in a method called setupFields(). It is pretty self-explanatory. The
DBObject requires a database table name which is provided by the call to setTargetTable(), a
human-readable description provided by setDescription(). The names of the fields are defined by
the addField() calls. The addField() method accepts for five parameters: the database column
name, the scalar length of the field, the database type of the field, a Boolean that declares whether the
column accepts null values or not, and a description. Finally, a field must be chosen to be the primary
key of the table with the call to addKey(). As you can see, field names correspond directly to the
column names of a database table.

All DBObjects have essential methods, add(), update(), delete() and a number of various search
and retrieval methods. The DBObject class internally provides a hash table of fields and values, which
you can access by using accessor and mutator methods. If you want to get the value of a particular
column in the row set use the method “String getField(String fieldName)”. If you want
to update a particular column, use the method “void setField(String fieldName, String
newValue)”.

import com.jcorporate.expresso.core.dbobj.*;

import com.jcorporate.expresso.core.db.*;

public class StockTrade extends SecuredDBObject

{

public StockTrade() throws DBException

{ super(); }

public StockTrade(DBConnection theConnection) throws DBException

{ super(theConnection); }

protected synchronized void setupFields()

throws DBException

{

setTargetTable("STOCKTRADE1");

TheServerSide.com Page 12 Peter Pilgrim

Based on Expresso 4.0 Page 12 Best Practice with Expresso Framework

setDescription("Stock Trade I");

addField("ST_ID", "int", 0, false, "Text Channel Autoincrement ID");

addField("ST_TITLE", "varchar", 40, false, "Stock Title");

addField("ST_TRADER", "varchar", 40, false, "Owner Trader");

addField("ST_STATUS", "varchar", 10, true, "Trade Status");

addField("ST_PRICE", "float", 0, true, "Current Price");

addField("ST_ASK", "float", 0, true, "Asking Price");

addField("ST_BID", "float", 0, true, "Bid Price");

addField("ST_CHANGE", "float", 0, true, "Percentage Change");

addKey("ST_ID");

}

public DBObject getThisDBObj() throws DBException {

return new StockTrade(); }

}

Whenever you write a DBObject subclass you must write the default constructor and make sure that it
calls the super class constructor. At the very least, the constructor that accepts a DBConnection
object must also be defined. A special method call getThisDBObj() should also be overridden. This
method should simply return a new instance of the particular database object class. It is called
internally by Expresso. (There are actually two more constructors deemed worthy to include, and a way
of pre-populating a database table when it is created, but I have left those out to save space. See the
software source code for more details.)

With this definition of the StockTrade object class, Expresso will be able to automatically generate
the SQL statement for this database object that goes something along this line:

create table STOCKTRADE1 (

ST_ID integer not null, ST_TITLE varchar(40) not null,

ST_TRADER varchar(40) not null, ST_STATUS varchar(10),

ST_PRICE numeric, ST_ASK numeric, ST_BID numeric, ST_CHANGE numeric,

PRIMARY KEY (ST_ID))

I should say that the DBObject should not be confused with a Struts ActionForm. They are completely
different entities. Expresso does not populate or create database objects automatically from an Http
servlet request. Rather, you must create the database object from inside your Expresso controllers. In
fact, Expresso supplements the use of Action forms; the toolkit has its own input, output, and transition
methodology, as you will see later in the next section.

TheServerSide.com Page 13 Peter Pilgrim

Based on Expresso 4.0 Page 13 Best Practice with Expresso Framework

 Controllers

The most confusing aspect of using Expresso Framework that developers find difficult is writing their
own controllers. A controller in Expresso is much like the controller in MVC, but typically acts as both
the model and controller. This confuses a lot of computer science theoreticians because they expect the
controller to handle only the routing and a separate model object to handle the business logic, in exactly
the way they have been taught in school. Also, many developers who stumble across the framework
have not previously had any experience working with any frameworks at all. Most developers come in
from the cold where they learnt directly from the Sun Pet Store Blueprint example. This famous
example, particularly uses raw JSP, Servlets, and context path redirection. I guess what I am trying to
say is that using a framework for the first time feels, well, alien.

An Expresso controller is the point of access
that allows the application to move from the
current state to the next state. It is a general
concept known as the Finite State Machine.
Indeed, any web application can be thought of
as a complex FSM. If you think of the workflow
for withdrawing money from a bank automatic
teller machine, then you see the idea. Some
person inserts a cash card, enters their secret
personal identity number, thereafter verification
takes place. If the person is authenticated then
he or she must be a true customer. If the PIN
does not verify, then the card is rejected or held
by the teller. The authenticated customer
chooses withdrawal from a menu. The customer
enters the amount. The back-end system verifies
that the amount does not exceed the current
account or some other predefined limit. If all
goes well, the cash is dispensed, the transaction
is committed, the audit is written, and the teller
ejects the customer’s card. The teller resets itself and returns to the welcome page screen ready for the
next customer. The controller is the thing that manages the process of control. Moreover, the complex
FSM can be simplified. FSM can be built from a set of building block FSM’s. You would not write a
full-blown auto teller application inside one massive controller; rather, each important aspect of it
would make a suitable controller operation. In a nutshell the Expresso controller manages the workflow
or a subset of the total workflow of the application.

Expresso defines a Controller object class, which is a direct subclass of the Struts Action. It is,
essentially, a collection of states as alluded to above. The basic Controller object is unsecured, but
just like the SecuredDBObject, there is a secured version available called DBController, a direct
extension of the Controller class which provides user profile security for a single user or a group of
users. Also, DBController permits none, certain states, or all states, to be secured against a user
profile. Now that we have the StockTrade database object, it is time to write a StockController

Forthcoming Struts Features
The custom tag actions of the Struts 1.0 release supports
nested bean properties. This powerful feature allows you
to access delegated business objects in JSP using a simple
dot (.) and array syntax notation. For example let’s suppose
we have a shopping cart that stores a delegated product and
we need to get the name of the third product. We could
write
“cart.product[2].name” which translates to Java
“getCart().getProduct(2).getName()”.

The Struts nightly build (alpha code) has several new
features. One of relevance to Expresso is mapped
properties. This enables a DBObject to be populated from a
JSP using a new syntax. Given the follow bean properties.

Object getField(String key)

setField(String key, Object value)

The mapped property can be accessed with the syntax
“field(key)”. This is almost similar to the DBObject
methods, except Strings are returned instead of Objects.
Even more profound changes are expected with the JSP
Standard Tag Library release 1.0.

TheServerSide.com Page 14 Peter Pilgrim

Based on Expresso 4.0 Page 14 Best Practice with Expresso Framework

object to manipulate it.

import com.jcorporate.expresso.core.controller.*;

import com.jcorporate.expresso.core.controller.session.*;

import com.jcorporate.expresso.core.dbobj.*;

import com.jcorporate.expresso.core.db.*;

import com.xenonsoft.orangetrader.ot1.dbobj.StockTrade;

public class StockController extends DBController

{

public StockController()

{

super();

addState(new State("displayStocks", "displayStocks"));

addState(new State("promptBuyStock", "Prompt Buy Stock"));

addState(new State("promptSellStock", "Prompt Sell Stock"));

addState(new State("buyStock", "Buy Stock"));

addState(new State("sellStock", "Sell Stock"));

}

public String getTitle() {

return "Stock Controller II";

}

// MORE CODE…

}

The StockController has a default constructor that calls the superclass default constructor, as
always. It registers all of the states that the controller is going to manipulate. In contrast to pure Struts
Actions, the latest Expresso 4.0 release handles transfer to request to different states automatically.
You can, however, choose to override the mapping mechanism. Notice that there is a call to the
superclass method in the first line of the default constructor. This is a requirement for security
profiling. Trust me, you need it! The method getTitle() simply returns a readable string that names
this controller. Expresso has the capability to manipulate controllers directly and generate default views
of the input and outputs; this is because the toolkit has its own HTML generation package, which is
similar to, but less extensive than, the Jakarta Element Construction Set. This mode of output is the
default style for a controller. You can set the style to a refer to a JSP, in which case you decide how to
handle the controller response. A controller can be told to generate XML content if the mode style is
setting XML.

All Expresso controllers can generate responses for the purpose of form generation, or simple
presentation, for example, in a JSP, as I mentioned above. There are four fundamental object classes

TheServerSide.com Page 15 Peter Pilgrim

Based on Expresso 4.0 Page 15 Best Practice with Expresso Framework

that all immediately derive from a special ControllerElement abstract class.

• Input class is an element that a controller creates when it expects some input. It is usually an
HTML Form element tag such as a text input field, but can be a drop-down select list or a set of
radio boxes.

• Output class is an element that a controller creates just to provide output.

• Transition class is an element that a controller creates to cause a transition from one state to
another. In our on-line stock trader application this will literally be “Buy Stock” and “Sell Stock”.
This is often represented as an HTML Submit, Button, Image element in a JSP, but it could also be
a complicated set of JavaScript and image maps on the client side.

• Block class is an element that aggregates the other three controller element types into a structured
response.

Displaying Stock Trades

Let us look at the first state, the method displayStocks(), which reads all the stocks from the
database table using the database object StockTrade.

protected ControllerResponse runDisplayStocksState(

ControllerRequest myRequest, ControllerResponse myResponse)

throws ControllerException

{

try {

Block blockList = new Block("StockList");

StockTrade stockInit = new StockTrade();

stockInit.setDBName(myRequest.getDBName());

ArrayList list = stockInit.searchAndRetrieveList("ST_TITLE");

for (int k=0; k<list.size(); ++k) {

StockTrade stock = (StockTrade)list.get(k);

// Create a Block for each row tuple

Block blockRow = new Block("Stock"+k);

blockList.add(blockRow);

// Create an Output for the DBObject row tuple

Output out1 = new Output();

out1.setName("Detail");

out1.setAttribute("Title", stock.getField("ST_TITLE"));

out1.setAttribute("Trader", stock.getField("ST_TRADER"));

out1.setAttribute("Price", stock.getField("ST_PRICE"));

out1.setAttribute("Ask", stock.getField("ST_ASK"));

TheServerSide.com Page 16 Peter Pilgrim

Based on Expresso 4.0 Page 16 Best Practice with Expresso Framework

out1.setAttribute("Bid", stock.getField("ST_BID"));

out1.setAttribute("Change", stock.getField("ST_CHANGE"));

out1.setAttribute("Status", stock.getField("ST_STATUS"));

blockRow.add(out1);

Transition buyTrx=new Transition("Buy", getClass().getName());

buyTrx.setName("Buy");

buyTrx.addParam("state", "promptBuyStock");

buyTrx.addParam("stock", stock.getField("ST_ID"));

blockRow.add(buyTrx);

Transition sellTrx=new Transition("Sell",getClass().getName());

sellTrx.setName("Sell");

sellTrx.addParam("state", "promptSellStock");

sellTrx.addParam("stock", stock.getField("ST_ID"));

blockRow.add(sellTrx);

}

myResponse.addBlock(blockList);

}

catch (DBException dbe) {

throw new ControllerException(

myName+ " database exception: "+dbe.getMessage());

}

myResponse.setStyle("listStocks");

return myResponse;

}

Although this method looks complicated, what it is doing is very simple. If you choose to use the
default state handler, each controller has to follow a simple signature, prefix the method signature with
“run” and suffix it with “State”. So the old method “displayStocks” becomes the new method
“runDisplaysStockState”. Additionally, the signature must accept two parameters of the type
ControllerRequest, and ControllerResponse. These are similar to the HttpServletRequest and
HttpServletResponse classes, but generalised so that the Expresso controllers can be used outside the
Java Servlet environment, for example in a non-web application, such as a command-line utility
program. If you are a seasoned Struts developer, you may be wondering what has happened to the
familiar ActionForm and the ActionMapping classes. The Expresso Controller class implements the
performAction() method, and stores the action form and the action mapping references in the
ControllerRequest and ConfigManager objects respectively. (See the sidebar pullout: How to use
DBObjects in a Pure Struts Action)

TheServerSide.com Page 17 Peter Pilgrim

Based on Expresso 4.0 Page 17 Best Practice with Expresso Framework

Returning back to the first state method runPromptBuyStockState(), first, we create a Block object
named “StockList” which forms the root of the displayed stock list, the controller’s response. We then
proceed to retrieve all the stocks from the
database using the database object class
StockTrade. For each row tuple (which
will be an individual stock trade), we need to
create a separate block for it called
“Stock<RowNumber>”. For each row-block
we create an Output object called “Detail”
with named attributes that are filled directly
from the column values from the database.
For example, the attribute called “Title” for
the output object has the database value for
the column “ST_ID” from the
“STOCKTRADE1” table. We repeat the task for
each column field we eventually want to
display in the JSP. Each row block also has
two Action objects that we call “Buy” and
“Sell” effectively. If you look carefully at the
action objects created, you will see that they
will transfer to the states “promptBuyStock”
and “promptSellStock” respectively. Also
note that the stock id number is set as a
parameter for each action. This is because we will need to know what stock was selected when we
come to buy or sell a stock. This is analogous to your e-commerce shopping cart system. So essentially
the controller response is thus:

ROOT

*--- StockList (block)

|

+--Stock<n> (block)

|

+-- Detail (output)

+-- Buy (transition)

+-- Sell (transition)

Notice the state method must catch any database exceptions and re-throw them as controller
exceptions. This is also a very good practice.

Controllers, Styles, States and Action Forwards

If you recall, Jakarta Struts associates a set of ActionForwards with an Action inside an
ActionMapping object. Since Expresso controllers are derived directly from Action class, they are
also associated with action forwards. In pure Struts programming, you normally explicitly write the

How to use DBObjects in a pure Struts Action

The key to using Expresso database objects within a pure
Struts Action (no I dare not say legacy Struts) is to make
sure that Expresso is initialised properly. The best way to
achieve this is to allow the ExpressoActionServlet
to serve as the controller.

If not then you should initialise the
com.jcorporate.expresso.core.misc.Confi
gManager class. Expresso needs to initialise itself from
configuration files. Once you have set up the configuration
manager, then it is a simple matter of retrieving database
connection pools, and then retrieving a database connection
in your Struts Action. You need to have a working database
name that you supply to any created DBObjects. Once
Expresso is initialised and configured, creating and using a
database object inside a pure Struts Action is no problem at
all.

TheServerSide.com Page 18 Peter Pilgrim

Based on Expresso 4.0 Page 18 Best Practice with Expresso Framework

action forward that is returned by calling the findForward() method of the ActionMapping class.
Because Expresso controllers already handle the concept of internal states, Expresso maps each state
automatically to an action forward that has the same name as the state. For example, the state
“displayStocks” is mapped to the action forward “displayStocks”. Inside the Orange Trader’s
Struts XML configuration file we could write something like this:

<forward name=”displayStocks” path=”/orangetrader/stockList.jsp”

This means that the state method runDisplayStocksState() does not even have to specify an
ActionForward to return. But wait a minute, what if you want to conditionally switch between two or
more action forwards? You could do this in ordinary Struts but do you fix this in Expresso? And where
has the Struts ActionMapping object disappeared to? How do I write the equivalent of
mapping.findForward(“whatever”) with Expresso? One of the answers is found inside the
ControllerResponse object that passed through the controller state method. The method is called
setStyle() and accepts a single parameter that defines the action forward logical name, or it defines
the output mode of the controller. For example “xml” to produce an XML document of the controller’s
response or “default” to produce an automatic HTML generation of the controller’s response. In the
runDisplayStocksState() method, the controller forwards to the action forward called
“listStocks”, which is defined in the Struts configuration XML file as:

</struts-config>

</action-mappings>

<action path="/StockController2"

type="com.xenonsoft.orangetrader.ot2.controller.StockController"

scope="request" validate="false">

<forward name="listStocks" path="/orangetrader/ot2/index.jsp" />

<forward name="promptBuy" path="/orangetrader/ot2/buy.jsp" />

<forward name="promptSell" path="/orangetrader/ot2/sell.jsp" />

</action>

</action-mappings>

</struts-config>

During the initialisation phase, Expresso saves the ActionMapping object associated with each
Controller, inside a singleton global class called ConfigManager; there, you will find a method called
getMapping() that accepts two parameters: the controller name and the state name. So to retrieve the
mapping for the current state we call getMapping(“StockController”, ”displayStock”). (Some
sophisticated web applications generate dynamic ActionForwards and at this moment in time there is
no method to set this inside Expresso’s ControllerResponse object. A slight oversight.)

The List Stocks View

TheServerSide.com Page 19 Peter Pilgrim

Based on Expresso 4.0 Page 19 Best Practice with Expresso Framework

Now we look at the JSP, “liststocks.jsp”, that displays the view of the controller and uses custom
tag actions to produce a view. I will simply present a short overview of what is going on rather than
provide all the hard-details. We ask the controller to generate the list stock view by specifying a URL
with the controller’s logical name. For example we add the hyperlink to JSP navigation page
“/StockController.do?state=displayStocks”. After returning from the
runDisplayStocksState() method, the controller response is stored in the request scope under a
known public key attribute Controller.RESPONSE_KEY. In this way a JSP can read the controller
response and build an HTML Form. Expresso toolkit has its own custom tag actions to generate HTML
form elements in the documentation. Expresso has also supplied adapted Struts custom tags to work
with Expresso controllers. I wrote my own custom tag actions before JCorporate published their
taglibs; the central concept between both tag libraries remains the same: read the controller’s response
from the public key attribute.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" %>

<%@ taglib uri="/xenon" prefix="xenon" %>

<%@ taglib uri="/xspresso" prefix="xspresso" %>

<table width="100%" border="1" cellspacing="1" cellpadding="2" >

<tr>

<th> Title </th>

<th> Trader </th>

<th> Price </th>

<th> Ask </th>

<th> Bid </th>

<th> Change </th>

<th> Status </th>

<th colspan="2"> Command </th>

</tr>

<xspresso:block controller="controller" blockPath="StockList"

id="blockStocks" >

<xenon:loop name="blockStocks" property="nested"

loopId="block" counterId="counter"

className="com.jcorporate.expresso.core.controller.Block" >

<tr>

<xspresso:output outputPath="Detail" blockName="block" >

<td> <xspresso:outputAttribute property="Title" /> </td>

<td> <xspresso:outputAttribute property="Trader" /> </td>

<td> <xspresso:outputAttribute property="Price" /> </td>

<td> <xspresso:outputAttribute property="Ask" /> </td>

<td> <xspresso:outputAttribute property="Bid" /> </td>

<td> <xspresso:outputAttribute property="Change" /> </td>

<td> <xspresso:outputAttribute property="Status" /> </td>

TheServerSide.com Page 20 Peter Pilgrim

Based on Expresso 4.0 Page 20 Best Practice with Expresso Framework

</xspresso:output>

<form action="<%= contextPath %>/StockController.do?cmd=button" method="POST"
>

<td>

<xspresso:transition transitionName="Buy" blockName="block" />

</td>

<td>

<xspresso:transition transitionName="Sell" blockName="block" />

</td>

</form>

</tr>

</xenon:loop>

</xspresso:block>

</table>

The next action <xspresso:block> retrieved the named “StockList” Block from the controller. This
is the root of the controller response. We now iterate through block rows that have been nested in the
“StockList” block. What we are doing is generating an HTML table element where each table row
corresponds directly to a row tuple from the database. For this task we use a custom iteration tag
<xenon:loop>. Every loop of the custom iteration tag supplies a Block object for each row of the
stock list. Because the Output object is nested in each block row, we can use the
<xspresso:output> tag to get its reference. Within the body content of that tag we have another
series of tags <xspresso:outputAttribute> to retrieve the named attributes. After displaying the
row tuple information, we display the Transition objects “buy stock” and “sell stock”. The custom
tag action <xspresso:transition> performs this task for us. It displays the relevant configured
HTML Submit buttons for us.

Buying Stocks

The controller divides the task of buying a stock into two states. The first state prompts the user and the
second state, if it is activated, completes the transaction of buying a stock. The method
promptBuyStock() in the stock controller retrieves the stock id number from the controller request
parameters. (Remember this was set as a parameter when the transitions were generated in
displayStocks().) The id number is used to retrieve the corresponding stock trade from the database.
An Output object called “SelectedStock” is created and added to the controller response, and its
attributes are set up with the values from the database row tuple.

protected ControllerResponse runPromptBuyStockState(

ControllerRequest myRequest, ControllerResponse myResponse)

throws ControllerException

{

TheServerSide.com Page 21 Peter Pilgrim

Based on Expresso 4.0 Page 21 Best Practice with Expresso Framework

try {

String stockCodeStr = this.getParameter("stock");

StockTrade stock = new StockTrade();

stock.setDBName(this.getDBName());

stock.setField("ST_ID", stockCodeStr);

stock.retrieve();

Output out1 = new Output();

out1.setName("SelectedStock");

out1.setAttribute("Id", stock.getField("ST_ID"));

out1.setAttribute("Title", stock.getField("ST_TITLE"));

out1.setAttribute("Trader", stock.getField("ST_TRADER"));

out1.setAttribute("Price", stock.getField("ST_PRICE"));

out1.setAttribute("Ask", stock.getField("ST_ASK"));

out1.setAttribute("Bid", stock.getField("ST_BID"));

out1.setAttribute("Change", stock.getField("ST_CHANGE"));

out1.setAttribute("Status", stock.getField("ST_STATUS"));

this.add(out1);

// Create an input to get a bidding price from the client

Input price = new Input();

price.setName("BidPrice");

price.setLabel("Bidding Price");

price.setDisplayLength(12);

price.setMaxLength(12);

price.setType("text");

this.add(price);

// Create an transition to submit the form

Transition buyTransition = new Transition("Buy", getClass().getName());

buyTransition.setName("Buy");

buyTransition.addParam("state", "buyStock");

buyTransition.addParam("stock", stock.getField("ST_ID"));

buyTransition.addParam("next", getParameter("next"));

this.add(buyTransition);

}

catch (DBException dbe) {

throw new ControllerException(

myName+ " database exception: "+dbe.getMessage());

}

myResponse.setStyle("promptBuy");

}

TheServerSide.com Page 22 Peter Pilgrim

Based on Expresso 4.0 Page 22 Best Practice with Expresso Framework

We continue by creating an Input object called “BidPrice” to allow the user to enter a bidding price.
Finally, we generate a buy Transition object to allow the user to buy the stock. This transition will
transfer to the next state “buyStock”. The transition parameter “stock” is set to the stock id. The
transition parameter “next” is set to the next URL the controller will redirect to, which will be the JSP
page that displays the bidding price form.

The Prompt Buy Stock View

Here is the “buy.jsp”, which should be fairly comprehensible by now. The controller response is
found again in request scope Controller.RESPONSE_KEY. We display the actual stock trade details in
an HTML table and we use the <xspresso:output> and nested <xspresso:outputAttribute>
action tags to get the information. Now we come to the HTML Form. As soon as the form is submitted
it will attempt to invoke the ExpressoActionServlet that handles interaction with our controller with
a special CGI query parameter “cmd=button”. This parameter signals the action servlet to specially
interpret HTML form submit buttons. The rendering of Transition objects generates an HTML
form submit tag and also an HTML form hidden tag, which holds all the transition parameter names
and values that we generated in the controller response. The hidden tag is named a specific way that
associates it with the partner HTML form submit tag. The “cmd=button” query parameter tells the
action servlet to also look out for associated query parameters defined by a specially named HTML
form hidden tag. The value of the hidden tag is defined as a list of mapped parameters, for example
value=”firstName=peter&lastName=pilgrim”. If the ExpressoAction Servlet sees the special name
attribute as a query parameter, it will automatically convert the value string into individual request
attributes. So for instance, request.getAttribute(“firstName”) will return the string “peter”.
(It is a bit long-winded, I know, but it really works! Use your browser’s “view source” to look at the
“buy.jsp” to see what is going on.)

<table border=”1” cellpadding=”2” cellspacing=”0” >

<tr>

<xspresso:output controller="controller" outputPath="SelectedStock" >

<td> <xspresso:outputAttribute property="Title" /> </td>

<td> <xspresso:outputAttribute property="Trader" /> </td>

<td> <xspresso:outputAttribute property="Price" /> </td>

<td> <xspresso:outputAttribute property="Ask" /> </td>

<td> <xspresso:outputAttribute property="Bid" /> </td>

<td> <xspresso:outputAttribute property="Change" /> </td>

<td> <xspresso:outputAttribute property="Status" /> </td>

</xspresso:output>

</tr>

</table>

<form action="<%= contextPath %>/StockController2.do?cmd=button" method="POST" >

<table border="1" cellspacing="1" cellpadding="2" >

TheServerSide.com Page 23 Peter Pilgrim

Based on Expresso 4.0 Page 23 Best Practice with Expresso Framework

<tr bgcolor="#E0E0FF" >

<td>Enter Bidding Price:</td>

<td>

<xspresso:input controller="controller" elementName="BidPrice" />

</td>

</tr>

<tr bgcolor="#E0E0FF" >

<td colspan="2">

<xspresso:transition controller="controller" transitionName="Buy" />

</td>

</tr>

</table>

</form>

The next part of the JSP, the form itself, utilises the <xspresso:input> custom action to display the
text field “BidPrice”. The appropriate HTML submit button is then rendered with the
<xspresso:transition> transition “Buy” again.

The Buy Stock State

Assuming the user wants to the buy the stock, the form will eventually be submitted to the controller
and it will enter the method “runBuyStockState()” in order to process the state. The method works
by retrieving the stock code and price from the controller request. An exception is raised if the price
cannot be converted from a String to a floating-point value. The stock id is used to retrieve the actual
StockTrade from the database. We can thus interrogate the stock trade itself. If the bidding price is
greater than or equal to the asking price and the asking price is not zero, then we have a sale. If we have
a sale, then we set the new price of the stock trade to the input bidding price, and reset the bidding price
accordingly. We also calculate the percentage change between the new price and the old price.
Otherwise, with no sale, we set a new bidding price if the new bidding price was lower than the current
one.

protected ControllerResponse runBuyStockState(

ControllerRequest myRequest, ControllerResponse myResponse)

throws ControllerException

{

String stockCode = myRequest.getParameter("stock");

String priceStr = myRequest.getParameter("BidPrice");

float price = 0.0F;

try { price = new Float(priceStr).floatValue(); }

catch (NumberFormatException nfe) {

throw new ControllerException(

TheServerSide.com Page 24 Peter Pilgrim

Based on Expresso 4.0 Page 24 Best Practice with Expresso Framework

"controller cannot parse float parameter `BidPrice'
("+priceStr+")");

}

try {

StockTrade stk = new StockTrade();

stk.setDBName(myRequest.getDBName());

stk.setField("ST_ID", stockCode);

stk.retrieve();

float askPrice = stk.getFieldFloat("ST_ASK");

float bidPrice = stk.getFieldFloat("ST_BID");

float currPrice = stk.getFieldFloat("ST_PRICE");

if (price >= askPrice && askPrice > 0.0) {

stk.setField("ST_TRADER", myRequest.getUser());

stk.setField("ST_STATUS", "BOUGHT");

stk.setField("ST_PRICE", Float.toString(price));

stk.setField("ST_BID", "0.0");

float change = (float)((price - currPrice) / currPrice * 100.0
);

stk.setField("ST_CHANGE", Float.toString(change));

stk.update();

}

else {

stk.setField("ST_STATUS", "WANTED");

if (price > bidPrice) {

stk.setField("ST_BID", Float.toString(price));

}

stk.update();

}

}

catch (DBException dbe) {

throw new ControllerException(

"unable to buy stock:`"+stockCode+

"' DBException: "+dbe.getMessage());

}

try { transition("displayStocks", myRequest, myResponse); }

catch (NonHandleableException nhe) {

nhe.printStackTrace(System.err);

}

TheServerSide.com Page 25 Peter Pilgrim

Based on Expresso 4.0 Page 25 Best Practice with Expresso Framework

return myResponse;

}

 Notice above that Expresso permits a controller to
transfer to the next state, in the middle of the
controller state. This is very useful for presenting a
database-refreshed view back to the user, because
you can write a state that simply reads from the
database into action forms, which are then printed
out to the JSP view. Typically, reading from the
database involves an SQL select statement such as
“SELECT A,B FROM FOOBAR”. The update state
makes the changes to the database itself, essentially
performing “INSERT INTO FOOBAR” on the
database. At this point the presentation view and the
database are showing different information. It would
be nice to show a refresh of the database, and this is
what the method transition() can do. It transfers
to another controller state, conveniently saving
repetitious code, time and energy.
And that, ladies and gentlemen, concludes the
buying stock transaction.

Selling Stocks

Selling stocks is almost a mirror image of the buying process. The controller again has two states to
progress through: the first state, “promptSellStock”, and the second state, “sellStock”. The first state
prompts the user for the asking price this time. It supplies the controller response with the selected
stock trade, an Inputobject for the user to enter a price, and an Action object to transfer to the
“sellStock” state. The code for “runPromptSellStockState” and “sell.jsp” are so similar to the
buying process that I will not show them here, saving space and potentially some trees of the world’s
great forests.

The runSellStockState() method works by retrieving the stock code, and the price from the
controller request. The stock id is used to retrieve the actual StockTrade from the database. We can
thus interrogate the selected stock trade. If the asking price is greater than or equal to the bidding price
and the bidding price is not zero then we have a sale. If we have a sale, then we set the new price of the
stock trade to the input asking price, and reset the asking price accordingly. We also calculate the
percentage difference between the new price and the old price. Otherwise, with no sale possible, we set
a new asking price if the new asking price was higher than the current one.

protected ControllerResponse runSellStockState(

ControllerRequest myRequest, ControllerResponse myResponse)

Where is my Action Form, Action Mapping?

Expresso controllers hide the existence of the Struts
action form. If you have created an ActionForm and
associate it with an ActionMapping, it can still be
retrieved from inside an Expresso controller. You will
find the name of it from the ControllerRequest
object. The accessor method is called
getFormAttribute() and there is a mutator
method called setFormAttribute(). The action
form can be found by obtaining the form attribute’s
name, then using it to query the request scope. In other
words:

ActionForm form = (ActionForm)

request.getAttribute(

myRequest.getFormAttribute());

Likewise Expresso also hides the
ActionMapping class, but not completely. You
can retrieve the missing action mapping object from
the ConfigManager.getMapping() method.
See Expresso’s Javadoc for more details.

TheServerSide.com Page 26 Peter Pilgrim

Based on Expresso 4.0 Page 26 Best Practice with Expresso Framework

throws ControllerException

{

String stockCode = myRequest.getParameter("stock");

String priceStr = myRequest.getParameter("AskPrice");

float price = 0.0F;

try { price = new Float(priceStr).floatValue(); }

catch (NumberFormatException nfe) {

throw new ControllerException(

myName+"controller cannot parse float parameter `AskPrice'
("+priceStr+")");

}

try {

StockTrade stk = new StockTrade();

stk.setDBName(myRequest.getDBName());

stk.setField("ST_ID", stockCode);

stk.retrieve();

float askPrice = stk.getFieldFloat("ST_ASK");

float bidPrice = stk.getFieldFloat("ST_BID");

float currPrice = stk.getFieldFloat("ST_PRICE");

if (price <= bidPrice && bidPrice > 0.0) {

stk.setField("ST_TRADER", myRequest.getUser());

stk.setField("ST_STATUS", "SOLD");

stk.setField("ST_PRICE", Float.toString(price));

stk.setField("ST_ASK", "0.0");

float change = (float)((price - currPrice) / currPrice * 100.0);

stk.setField("ST_CHANGE", Float.toString(change));

stk.update();

}

else {

stk.setField("ST_STATUS", "SELLING");

if (price < askPrice || askPrice < 0.01) {

stk.setField("ST_ASK", Float.toString(price));

}

stk.update();

}

float salePrice = stk.getFieldFloat("ST_PRICE");

}

catch (DBException dbe) {

throw new ControllerException(

"unable to sell stock:`"+stockCode+

TheServerSide.com Page 27 Peter Pilgrim

Based on Expresso 4.0 Page 27 Best Practice with Expresso Framework

"' DBException: "+dbe.getMessage());

}

// Goto back to the display stocks state

try { transition("displayStocks", myRequest, myResponse); }

catch (NonHandleableException nhe) {

nhe.printStackTrace(System.err);

}

return myResponse;

}

Conclusion

Developing a web application entirely from scratch can be a massive overkill. There just isn’t enough
time (or money) in the world to reinvent the wheel every time for each web application. It is better to
leverage an open-sourced framework and toolkit, like the Expresso Framework (or any other
framework that you might prefer politically to support and use) because it will almost certainly have far
more virtual Internet resources to help debug and maintain it. A good toolkit will have a strong
codebase, with an emphasis on quality over quantity; it should be popular, flexible, approachable,
comprehensible, and most importantly, useful. In the open-source world, it is particularly important to
get enough eyeballs to edit, compile, test, debug, and deploy in order to make projects successful in the
long run. Thus, frameworks, provided they are supported by many developers and users, will be
generally more robust, productive, and efficient than ‘going it alone’. I suspect that most people who
develop the next generation of web software will prefer to build on something that already works out of
the box. Hopefully, you can take this ‘best of’ practice, using a framework, Jakarta Struts, custom tag
action libraries, JSP’s, and Servlets, elsewhere and make it a success in your business web applications.
In the future, the impact of frameworks and the forthcoming JSP Standard Tag Library will have a
powerful affect on how we develop passive web technologies. Enjoy the rollercoaster ride because it is
going to be rough!

Peter Pilgrim,

February 2002

About the author
Peter Pilgrim is a Senior Systems Analyst has been working with Java since 1998, he is Sun Certified

TheServerSide.com Page 28 Peter Pilgrim

Based on Expresso 4.0 Page 28 Best Practice with Expresso Framework

Java 2 Programmer, previously worked considerably with Java Swing, JFC, and GUI technology, then
he made the change to the server-side. He is a member of the Association C & C++ Users group UK
http://www.accu.org/ where he regularly contributes Java related articles. He contributes to open source
software as a core developer with the Expresso Framework team. Peter lives in London, England,
presently works professionally for Deutsche Bank AG (UK). He can be reached by sending mail to
“peterp@xenonsoft.demon.co.uk” or “peter.pilgrim@db.com”.

To download the latest version of this article, please visit
http://www.xenonsoft.demon.co.uk/products/java.html

Caveat Emptor

This article was written against Expresso Framework 4.02 and the software described works with this
version of the toolkit. The nature of open source software often means that it is generally developed at
so-called Internet speed. So I cannot guarantee the complete validity of the source code after say three
weeks or even eighteen months down the line.

Resources

• Expresso Framework produced by JCorporate: http://www.JCorporate.com/

• Expresso Framework Project Page:
http://www.JCorporate.com/components/internal/projframe.jsp?category=65

• Software for this article: http://www.xenonsoft.demon.co.uk/products/java.html

• Expresso Developer's Guide: http://www.jcorporate.com/doc/edg/edg.html

• Jakarta Struts Project: http://jakarta.apache.org/struts/

• Ted Husted’s Struts Web Site http://www.husted.com/struts/

• J2EE Home Page at Sun Java division: http://java.sun.com/j2ee/

• Sun Java division J2EE Pet Store example:
http://java.sun.com/j2ee/blueprints/jps11/archoverview.html

• Sun Java division J2EE Blueprints: http://java.sun.com/j2ee/blueprints/index.html

• Model View Controller design pattern: http://compsci.about.com/cs/mvcpattern/

• Design patterns: http://compsci.about.com/cs/designpatterns/index.htm

• Design patterns without the advertisements by Mark Grand:
http://www.mindspring.com/~mgrand/pattern_synopses.htm

• Free Design Patterns Java Companion on-line book:
http://www.patterndepot.com/put/8/JavaPatterns.htm

http://www.xenonsoft.demon.co.uk/products/java.html
http://www.jcorporate.com/
http://www.jcorporate.com/components/internal/projframe.jsp?category=65
http://www.xenonsoft.demon.co.uk/products/java.html
http://www.jcorporate.com/doc/edg/edg.html
http://jakarta.apache.org/struts/
http://www.husted.com/struts/
http://java.sun.com/j2ee/
http://java.sun.com/j2ee/blueprints/jps11/archoverview.html
http://java.sun.com/j2ee/blueprints/index.html
http://compsci.about.com/cs/mvcpattern/
http://compsci.about.com/cs/designpatterns/index.htm
http://www.mindspring.com/~mgrand/pattern_synopses.htm
http://www.patterndepot.com/put/8/JavaPatterns.htm

TheServerSide.com Page 29 Peter Pilgrim

Based on Expresso 4.0 Page 29 Best Practice with Expresso Framework

• JavaServer Page home pages:http://java.sun.com/products/jsp/

• Another good read for the Model View Controller design pattern: http://ootips.org/mvc-pattern.html

• Java Server Faces JSR 127 http://www.jcp.org/jsr/detail/127.jsp

• Element Construction Set Jakarta http://jakarta.apache.org/ecs/index.html

• Professional JSP 2nd Edition, Brown, Burdick, Falkner, Wrox Books isbn 1861005512

• JSP Site Design 1st Edition, Duffal, Goyal, Husted et al, Wrox Books isbn 1861004958

http://java.sun.com/products/jsp/
http://ootips.org/mvc-pattern.html
http://www.jcp.org/jsr/detail/127.jsp
http://jakarta.apache.org/ecs

	Struts
	Expresso Framework
	Schemas
	Database Objects
	Controllers
	Displaying Stock Trades
	Controllers, Styles, States and Action Forwards
	The List Stocks View
	Buying Stocks
	The Prompt Buy Stock View
	The Buy Stock State
	Selling Stocks
	Conclusion
	About the author

	Caveat Emptor
	Resources

