

Distribution
Patterns

Chapter 15

Distribution Patterns

eaa.book Page 387 Monday, October 7, 2002 8:20 AM

388

D

ISTRIBUTION

 P

ATTERNS

Remote
Facade

Remote Facade

Provides a coarse-grained facade on fine-grained
objects to improve efficiency over a network.

In an object-oriented model, you do best with small objects that have small
methods. This gives you lots of opportunity for control and substitution of
behavior, and to use good intention revealing naming to make an application
easier to understand. One of the consequences of such fine-grained behavior is
that there’s usually a great deal of interaction between objects, and that interac-
tion usually requires lots of method invocations.

Within a single address space fine-grained interaction works well, but this
happy state does not exist when you make calls between processes. Remote
calls are much more expensive because there’s a lot more to do: Data may have
to be marshaled, security may need to be checked, packets may need to be
routed through switches. If the two processes are running on machines on
opposite sides of the globe, the speed of light may be a factor. The brutal truth
is that any inter-process call is orders of magnitude more expensive than an in-
process call—even if both processes are on the same machine. Such a perfor-
mance effect cannot be ignored, even for believers in lazy optimization.

As a result any object that’s intended to be used as a remote objects needs a
coarse-grained interface that minimizes the number of calls needed to get some-
thing done. Not only does this affect your method calls, it also affects your
objects. Rather than ask for an order and its order lines individually, you need
to access and update the order and order lines in a single call. This affects your
entire object structure. You give up the clear intention and fine-grained control
you get with small objects and small methods. Programming becomes more dif-
ficult and your productivity slows.

A

Remote Facade

 is a coarse-grained facade [Gang of Four] over a web of
fine-grained objects. None of the fine-grained objects have a remote interface,

getAddressData
setAddress(street, city, zip)

Address Facade

getStreet()
getCity()
getZip()
setStreet(arg)
setCity(arg)
setZip(arg)

Address

eaa.book Page 388 Monday, October 7, 2002 8:20 AM

R

EMOTE

 F

ACADE

389

Remote
Facade

and the

Remote Facade

 contains no domain logic. All the

Remote Facade

 does
is translate coarse-grained methods onto the underlying fine-grained objects.

How It Works

Remote Facade

 tackles the distribution problem which the standard OO
approach of separating distinct responsibilities into different objects; and as a
result it has become the standard pattern for this problem. I recognize that fine-
grained objects are the right answer for complex logic, so I ensure that any
complex logic is placed in fine-grained objects that are designed to collaborate
within a single process. To allow efficient remote access to them, I make a sepa-
rate facade object that acts as a remote interface. As the name implies, the
facade is merely a thin skin that switches from a coarse-grained to a fine-
grained interface.

In a simple case, like an address object, a

Remote Facade

 replaces all the get-
ting and setting methods of the regular address object with one getter and one
setter, often referred to as

bulk accessors

. When a client calls a bulk setter, the
address facade reads the data from the setting method and calls the individual
accessors on the real address object (see Figure 15.1) and does nothing more.
This way all the logic of validation and computation stays on the address object
where it can be factored cleanly and can be used by other fine-grained objects.

In a more complex case a single

Remote Facade

 may act as a remote gateway
for many fine-grained objects. For example, an order facade may be used to get

Figure 15.1 One call to a facade causes several calls from the facade to the domain
object

an address facade an address

getAddressData
getCity

getState

getZip

eaa.book Page 389 Monday, October 7, 2002 8:20 AM

390

D

ISTRIBUTION

 P

ATTERNS

Remote
Facade

and update information for an order, all its order lines, and maybe some cus-
tomer data as well.

In transferring information in bulk like this, you need it to be in a form that
can easily move over the wire. If your fine-grained classes are present on both
sides of the connection and they’re serializable, you can transfer them directly
by making a copy. In this case a

getAddressData

method creates a copy of the orig-
inal address object. The

setAddressData

 receives an address object and uses it to
update the actual address object’s data. (This assumes that the original address
object needs to preserve its identity and thus can’t be simply replaced with the
new address.)

Often you can’t do this, however. You may not want to duplicate your domain
classes on multiple processes, or it may be difficult to serialize a segment of a
domain model due to its complicated relationship structure. The client may not
want the whole model but just a simplified subset of it. In these cases it makes
sense to use a

Data Transfer Object (401)

 as the basis of the transfer.
In the sketch I’ve shown a

Remote Facade

 that corresponds to a single
domain object. This isn’t uncommon and it’s easy to understand, but it isn’t the
most usual case. A single

Remote Facade

would have a number of methods,
each designed to pass on information from several objects. Thus,

getAddressData

and

setAddressData

 would be methods defined on a class like

CustomerService,

which would also have methods along the lines of

getPurchasingHistory

 and

updateCreditData.

Granularity is one of the most tricky issues with

Remote Facade

. Some peo-
ple like to make fairly small

Remote Facades

, such as one per use case. I prefer
a coarser grained structure with much fewer

Remote Facades

. For even a mod-
erate-sized application I might have just one and even for a large application I
may have only half a dozen. This means that each

Remote Facade

 has a lot of
methods, but since these methods are small I don’t see this as a problem.

You design a

Remote Facade

 based on the needs of a particular client’s
usage—most commonly the need to view and update information through a
user interface. In this case you might have a single

Remote Facade

 for a family
of screens, for each of which one bulk accessor method loads and saves the
data. Pressing buttons on a screen, say to change an order’s status, invokes
command methods on the facade. Quite often you’ll have different methods on
the

Remote Facade

 that do pretty much the same thing on the underlying
objects. This is common and reasonable. The facade is designed to make life
simpler for external users, not for the internal system, so if the client process
thinks of it as a different command, it is a different command, even if it all goes
to the same internal command.

Remote Facade

 can be stateful or stateless. A stateless

Remote Facade

 can be
pooled, which can improve resource usage and efficiency, especially in a B2C

eaa.book Page 390 Monday, October 7, 2002 8:20 AM

R

EMOTE

 F

ACADE

391

Remote
Facade

situation. However, if the interaction involves state across a session, then it
needs to store session state somewhere using

Client Session State (456)

 or

Data-
base Session State (462),

 or an implementation of

Server Session State (458)

. As
stateful a

Remote Facade

 can hold on to its own state, which makes for an easy
implementation of

Server Session State (458)

, but this may lead to performance
issues when you have thousands of simultaneous users.

As well as providing a coarse-grained interface, several other responsibilities
can be added to a

Remote Facade

. For example, its methods are a natural point
at which to apply security. An access control list can say which users can invoke
calls on which methods. The

Remote Facade

 methods also are a natural point
at which to apply transactional control. A

Remote Facade

 method can start a
transaction, do all the internal work, and then commit the transaction at the
end. Each call makes a good transaction because you don’t want a transaction
open when return goes back to the client, since transactions aren’t built to be
efficient for such long running cases.

One of the biggest mistakes I see in a

Remote Facade

 is putting domain logic
in it. Repeat after me three times; “

Remote Facade

 has no domain logic.” Any
facade should be a thin skin that has only minimal responsibilities. If you need
domain logic for workflow or coordination either put it in your fine-grained
objects or create a separate nonremotable

Transaction Script (110)

 to contain
it. You should be able to run the entire application locally without using the

Remote Facades

 or having to duplicate any code.

Remote Facade

 and Session Facade

Over the last couple of years the Session
Facade [Alur et al.] pattern has been appearing in the J2EE community. In my
earlier drafts I considered

Remote Facade

 to be the same pattern as Session
Facade and used the Session Facade name. In practice, however, there’s a crucial
difference.

Remote Facade

 is all about having a thin remote skin—hence my
diatribe against domain logic in it. In contrast, most descriptions of Session
Facade involve putting logic in it, usually of a workflow kind. A large part of
this is due to the common approach of using J2EE session beans to wrap entity
beans. Any coordination of entity beans has to be done by another object since
they can’t be re-entrant.

As a result, I see a Session Facade as putting several

Transaction Scripts
(110)

 in a remote interface. That’s a reasonable approach, but it isn’t the same
thing as a

Remote Facade

. Indeed, I would argue that, since the Session Facade
contains domain logic, it shouldn’t be called a facade at all!

Service Layer

A concept familiar to facades is a

Service Layer (133).

The main
difference is that a service layer doesn’t have to be remote and thus doesn’t need to
have only fine-grained methods. In simplifying the

Domain Model (116)

, you

eaa.book Page 391 Monday, October 7, 2002 8:20 AM

392

D

ISTRIBUTION

 P

ATTERNS

Remote
Facade

often end up with coarser-grained methods, but that’s for clarity, not for network
efficiency. Furthermore, there’s no need for a service layer to use

Data Transfer
Objects (401)

. Usually it can happily return real domain objects to the client.
If a

Domain Model (116)

 is going to be used both within a process and
remotely, you can have a

Service Layer (133)

 and layer a separate

Remote
Facade

 on top of it. If the process is only used remotely, it’s probably easier to
fold the

Service Layer (133)

 into the

Remote Facade,

 providing the

Service
Layer (133)

has no application logic. If there’s any application logic in it, then I
would make the

Remote Facade

 a separate object.

When to Use It

Use

Remote Facade

 whenever you need remote access to a fine-grained object
model. You gain the advantages of a coarse-grained interface while still keeping
the advantage of fine-grained objects, giving you the best of both worlds.

The most common use of this pattern is between a presentation and a

Domain Model (116),

 where the two may run on different processes. You’ll get
this between a swing UI and server domain model or with a servlet and a server
object model if the application and Web servers are different processes.

Most often you run into this with different processes on different machines,
but it turns out that the cost of an inter-process call on the same box is suffi-
ciently large that you need a coarse-grained interface for any inter-process com-
munication regardless of where the processes live.

If all your access is within a single process, you don’t need this kind of con-
version. Thus, I wouldn’t use this pattern to communicate between a client

Domain Model (116)

 and its presentation or between a CGI script and

Domain
Model (116)

 running in one Web server. You don’t see

Remote Facade

 used
with a

Transaction Script (110)

 as a rule, since a

Transaction Script (110)

 is
inherently coarser grained.

Remote Facades

 imply a synchronous—that is, a remote procedure call—
style of distribution. Often you can greatly improve the responsiveness of an
application by going with asynchronous, message-based remote communica-
tion. Indeed, an asynchronous approach has many compelling advantages.
Sadly, discussion of asynchronous patterns is outside the scope of this book.

Example: Using a Java Session Bean as a

Remote Facade

 (Java)

If you’re working with the Enterprise Java platform, a good choice for a distrib-
uted facade is a session bean because its a remote object and may be stateful or
stateless. In this example I’ll run a bunch of POJOs (plain old Java objects) inside

eaa.book Page 392 Monday, October 7, 2002 8:20 AM

R

EMOTE

 F

ACADE

393

Remote
Facade

an EJB container and access them remotely through a session bean that’s designed
as a

Remote Facade

. Session beans aren’t particularly complicated, so everything
should make sense even if you haven’t done any work with them before.

I feel the need for a couple of side notes here. First, I’ve been surprised by
how many people seem to believe that you can’t run plain objects inside an EJB
container in Java. I hear the question, “Are the domain objects entity beans?”
The answer is, they can be but they don’t have to be. Simple Java objects work
just fine, as in this example.

My second side note is just to point out that this isn’t the only way to use ses-
sion beans. They can also be used to host

Transaction Scripts (110)

.
In this example I’ll look at remote interfaces for accessing information about

music albums. The

Domain Model (116)

 consists of fine-grained objects that
represent an artist, and album, and tracks. Surrounding this are several other
packages that provide the data sources for the application (see Figure 15.2).

In the figure, the dto package contains

Data Transfer Objects (401)

 that help
move data over the wire to the client. They have simple accessor behavior and
also the ability to serialize themselves in binary or XML textual formats. In the

Figure 15.2 Packages the remote interfaces.

api

client

dto

remote

domain

AlbumHome
AlbumService

ArtistDTO
AlbumDTO
TrackDTO

AlbumServiceBean
AlbumAssembler
ArtistAssembler

Album
Artist
Track
Player
Registry

eaa.book Page 393 Monday, October 7, 2002 8:20 AM

394

D

ISTRIBUTION

 P

ATTERNS

Remote
Facade

remote package are assembler objects that move data between the domain
objects and the

Data Transfer Objects (401)

. If you’re interested in how this
works see the

Data Transfer Object (401)

discussion.
To explain the facade I’ll assume that I can move data into and out of

Data
Transfer Objects (401)

 and concentrate on the remote interfaces. A single logi-
cal Java session bean has three actual classes. Two of them make up the remote
API (and in fact are Java interfaces); the other is the class that implements the
API. The two interfaces are the

AlbumService

 itself and the home object,

AlbumHome

.
The home object is used by the naming service to get access to the distributed
facade, but that’s an EJB detail that I’ll skip over here. Our interest is in the
Remote Facade itself; AlbumService. Its interface is declared in the API package to
be used by the client and is just a list of methods.

class AlbumService...

String play(String id) throws RemoteException;
String getAlbumXml(String id) throws RemoteException;
AlbumDTO getAlbum(String id) throws RemoteException;
void createAlbum(String id, String xml) throws RemoteException;
void createAlbum(String id, AlbumDTO dto) throws RemoteException;
void updateAlbum(String id, String xml) throws RemoteException;
void updateAlbum(String id, AlbumDTO dto) throws RemoteException;
void addArtistNamed(String id, String name) throws RemoteException;
void addArtist(String id, String xml) throws RemoteException;
void addArtist(String id, ArtistDTO dto) throws RemoteException;
ArtistDTO getArtist(String id) throws RemoteException;

Notice that even in this short example I see methods for two different classes
in the Domain Model (116): artist and album. I also see minor variations on the
same method. Methods have variants that use either the Data Transfer Object
(401) or an XML string to move data into the remote service. This allows the
client to choose which form to use depending on the nature of the client and of
the connection. As you can see, for even a small application this can lead to
many methods on AlbumService.

Fortunately, the methods themselves are very simple. Here are the ones for
manipulating albums:

class AlbumServiceBean...

public AlbumDTO getAlbum(String id) throws RemoteException {
return new AlbumAssembler().writeDTO(Registry.findAlbum(id));

}
public String getAlbumXml(String id) throws RemoteException {

AlbumDTO dto = new AlbumAssembler().writeDTO(Registry.findAlbum(id));
return dto.toXmlString();

}
public void createAlbum(String id, AlbumDTO dto) throws RemoteException {

new AlbumAssembler().createAlbum(id, dto);

eaa.book Page 394 Monday, October 7, 2002 8:20 AM

REMOTE FACADE 395

Remote
Facade

}
public void createAlbum(String id, String xml) throws RemoteException {

AlbumDTO dto = AlbumDTO.readXmlString(xml);
new AlbumAssembler().createAlbum(id, dto);

}
public void updateAlbum(String id, AlbumDTO dto) throws RemoteException {

new AlbumAssembler().updateAlbum(id, dto);
}
public void updateAlbum(String id, String xml) throws RemoteException {

AlbumDTO dto = AlbumDTO.readXmlString(xml);
new AlbumAssembler().updateAlbum(id, dto);

}

As you can see, each method really does nothing more than delegate to another
object, so it’s only a line or two in length. This snippet illustrates nicely what a
distributed facade should look like: a long list of very short methods with very
little logic in them. The facade then is nothing more than a packaging mecha-
nism, which is as it should be.

We’ll just finish with a few words on testing. It’s very useful to be able to do
as much testing as possible in a single process. In this case I can write tests for
the session bean implementation directly: these can be run without deploying to
the EJB container.

class XmlTester...

private AlbumDTO kob;
private AlbumDTO newkob;
private AlbumServiceBean facade = new AlbumServiceBean();
protected void setUp() throws Exception {

facade.initializeForTesting();
kob = facade.getAlbum("kob");
Writer buffer = new StringWriter();
kob.toXmlString(buffer);
newkob = AlbumDTO.readXmlString(new StringReader(buffer.toString()));

}
public void testArtist() {

assertEquals(kob.getArtist(), newkob.getArtist());
}

That was one of the JUnit tests to be run in memory. It showed how I can create
an instance of the session bean outside the container and run tests on it, allow-
ing a faster testing turnaround.

Example: Web Service (C#)

I was talking over this book with Mike Hendrickson, my editor at Addison-
Wesley. Ever alert to the latest buzzwords, he asked me if I had anything
about Web services in it. I’m actually loathe to rush to every fashion—after

eaa.book Page 395 Monday, October 7, 2002 8:20 AM

396 DISTRIBUTION PATTERNS

Remote
Facade

all, given the languid pace of book publishing any “latest fashion” that I write
about will seem quaint by the time you read about it. Still, it’s a good example
of how core patterns so often keep their value even with the latest technologi-
cal flip-flops.

At its heart a Web service is nothing more than an interface for remote usage
(with a slow string-parsing step thrown in for good measure). As such the basic
advice of Remote Facade holds: Build your functionality in a fine-grained man-
ner and then layer a Remote Facade over the fine-grained model in order to
handle Web services.

For the example, I’ll use the same basic problem I described previously, but
concentrate just on the request for information about a single album.
Figure 15.3 shows the various classes that take part. They fall into the familiar
groups: album service, the Remote Facade; two Data Transfer Objects (401);
three objects in a Domain Model (116); and an assembler to pull data from the
Domain Model (116) into the Data Transfer Objects (401).

The Domain Model (116) is absurdly simple; indeed, for this kind of prob-
lem you’re better off using a Table Data Gateway (144) to create the Data
Transfer Objects (401) directly. However, that would rather spoil the example
of a Remote Facade layered over a domain model.

class Album...

public String Title;
public Artist Artist;
public IList Tracks {

get {return ArrayList.ReadOnly(tracksData);}
}
public void AddTrack (Track arg) {

tracksData.Add(arg);
}
public void RemoveTrack (Track arg) {

tracksData.Remove(arg);
}
private IList tracksData = new ArrayList();

class Artist...

public String Name;

class Track...

public String Title;
public IList Performers {

get {return ArrayList.ReadOnly(performersData);}
}
public void AddPerformer (Artist arg) {

performersData.Add(arg);
}

eaa.book Page 396 Monday, October 7, 2002 8:20 AM

REMOTE FACADE 397

Remote
Facade

public void RemovePerformer (Artist arg) {
performersData.Remove(arg);

}
private IList performersData = new ArrayList();

I use Data Transfer Objects (401) for passing the data over the wire. These are
just data holders that flatten the structure for the purposes of the Web service.

class AlbumDTO...

public String Title;
public String Artist;
public TrackDTO[] Tracks;

Figure 15.3 Classes for the album Web service.

GetAlbum (key: String) : AlbumDTO

«web service»
Album Service

Artist: String
Title: String

Album DTO

Title: String
Performers: Array of String

Track DTO

*

Title: String

Album

Title: String

Track

Name: String

Artist1

*
1

*

*

*

WriteDTO (Album) :
AlbumDTO

Album Assembler

eaa.book Page 397 Monday, October 7, 2002 8:20 AM

398 DISTRIBUTION PATTERNS

Remote
Facade

class TrackDTO...

public String Title;
public String[] Performers;

Since this is .NET, I don’t need to write any code to serialize and restore into
XML. The .NET framework comes with the appropriate serializer class to do
the job.

This is a Web service, so I also need to declare the structure of the Data
Transfer Objects (401) in WSDL. The Visual Studio tools will generate the
WSDL for me, and I’m a lazy kind of guy, so I’ll let it do that. Here’s the XML
Schema definition that corresponds to the Data Transfer Objects (401):

<s:complexType name="AlbumDTO">
<s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name="Title" nillable="true" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="Artist" nillable="true" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="Tracks"
 nillable="true" type="s0:ArrayOfTrackDTO" />
 </s:sequence>
 </s:complexType>

<s:complexType name="ArrayOfTrackDTO">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="TrackDTO"
 nillable="true" type="s0:TrackDTO" />
 </s:sequence>
 </s:complexType>

<s:complexType name="TrackDTO">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="Title" nillable="true" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="Performers"
 nillable="true" type="s0:ArrayOfString" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfString">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="string"
 nillable="true" type="s:string" />
 </s:sequence>
 </s:complexType>

Being XML, it’s a particularly verbose data structure definition, but it does the
job.

To get the data from the Domain Model (116) to the Data Transfer Object
(401) I need an assembler.

class AlbumAssembler...

public AlbumDTO WriteDTO (Album subject) {
AlbumDTO result = new AlbumDTO();
result.Artist = subject.Artist.Name;

eaa.book Page 398 Monday, October 7, 2002 8:20 AM

REMOTE FACADE 399

Remote
Facade

result.Title = subject.Title;
ArrayList trackList = new ArrayList();
foreach (Track t in subject.Tracks)

trackList.Add (WriteTrack(t));
result.Tracks = (TrackDTO[]) trackList.ToArray(typeof(TrackDTO));
return result;

}
public TrackDTO WriteTrack (Track subject) {

TrackDTO result = new TrackDTO();
result.Title = subject.Title;
result.Performers = new String[subject.Performers.Count];
ArrayList performerList = new ArrayList();
foreach (Artist a in subject.Performers)

performerList.Add (a.Name);
result.Performers = (String[]) performerList.ToArray(typeof (String));
return result;

}

The last piece we need is the service definition itself. This comes first from the
C# class.

class AlbumService...

[WebMethod]
public AlbumDTO GetAlbum(String key) {

Album result = new AlbumFinder()[key];
if (result == null)

throw new SoapException ("unable to find album with key: " +
key, SoapException.ClientFaultCode);

else return new AlbumAssembler().WriteDTO(result);
}

Of course, this isn’t the real interface definition—that comes from the WSDL
file. Here are the relevant bits:

<portType name="AlbumServiceSoap">
<operation name="GetAlbum">

<input message="s0:GetAlbumSoapIn" />
<output message="s0:GetAlbumSoapOut" />

 </operation>
</portType>
<message name="GetAlbumSoapIn">

<part name="parameters" element="s0:GetAlbum" />
</message>
<message name="GetAlbumSoapOut">

<part name="parameters" element="s0:GetAlbumResponse" />
</message>
<s:element name="GetAlbum">

<s:complexType>
<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="key" nillable="true" type="s:string" />
</s:sequence>

</s:complexType>

eaa.book Page 399 Monday, October 7, 2002 8:20 AM

400 DISTRIBUTION PATTERNS

Remote
Facade

</s:element>
<s:element name="GetAlbumResponse">

<s:complexType>
<s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name="GetAlbumResult"
 nillable="true" type="s0:AlbumDTO" />
 </s:sequence>
 </s:complexType>
</s:element>

As expected, WSDL is rather more garrulous than your average politician,
but unlike so many of them, it does get the job done. I can now invoke the ser-
vice by sending a SOAP message of the form

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<GetAlbum xmlns="http://martinfowler.com">

<key>aKeyString</key>
</GetAlbum>

</soap:Body>
</soap:Envelope>

The important thing to remember about this example isn’t the cool gyrations
with SOAP and .NET but the fundamental layering approach. Design an appli-
cation without distribution, then layer the distribution ability on top of it with
Remote Facades and Data Transfer Objects (401).

eaa.book Page 400 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 401

Data Transfer
Object

Data Transfer Object

An object that carries data between processes in order
to reduce the number of method calls.

When you’re working with a remote interface, such as Remote Facade (388),
each call to it is expensive. As a result you need to reduce the number of calls,
and that means that you need to transfer more data with each call. One way to
do this is to use lots of parameters. However, this is often awkward to pro-
gram—indeed, it’s often impossible with languages such as Java that return
only a single value.

The solution is to create a Data Transfer Object that can hold all the data for
the call. It needs to be serializable to go across the connection. Usually an
assembler is used on the server side to transfer data between the DTO and any
domain objects.

Many people in the Sun community use the term “Value Object” for this pat-
tern. I use it to mean something else. See the discussion on page 487.

How It Works

In many ways, a Data Transfer Object is one of those objects our mothers told
us never to write. It’s often little more than a bunch of fields and the getters and
setters for them. The value of this usually hateful beast is that it allows you to
move several pieces of information over a network in a single call—a trick
that’s essential for distributed systems.

toXmlElement
readXml

title: String
artist: String

AlbumDTO

Album Assembler
title: String

Album

name: String

Artist

1

*

Chapter 12
Distribution Patterns

eaa.book Page 401 Monday, October 7, 2002 8:20 AM

402 DISTRIBUTION PATTERNS

Data Transfer
Object

Whenever a remote object needs some data, it asks for a suitable Data Trans-
fer Object. The Data Transfer Object will usually carries much more data than
what the remote object requested, but it should carry all the data the remote
object will need for a while. Due to the latency costs of remote calls, its better
to err on the side of sending too much data than have to make multiple calls.

A single Data Transfer Object usually contains more than just a single server
object. It aggregates data from all the server objects that the remote object is
likely to want data from. Thus, if a remote object requests data about an order
object, the returned Data Transfer Object will contain data from the order, the
customer, the line items, the products on the line items, the delivery informa-
tion—all sorts of stuff.

You can’t usually transfer objects from a Domain Model (116). This is
because the objects are usually connected in a complex web that’s difficult, if
not impossible, to serialize. Also you usually don’t want the domain object
classes on the server, which is tantamount to copying the whole Domain Model
(116) there. Instead you have to transfer a simplified form of the data from the
domain objects.

The fields in a Data Transfer Object are fairly simple, being primitives, sim-
ple classes like strings and dates, or other Data Transfer Objects. Any structure
between data transfer objects should be a simple graph structure—normally a
hierarchy—as opposed to the more complicated graph structures that you see in
a Domain Model (116). Keep these simple attributes because they have to be
serializable and they need to be understood by both sides of the wire. As a
result the Data Transfer Object classes and any classes they reference must be
present on both sides.

It makes sense to design the Data Transfer Object around the needs of a par-
ticular client. That’s why you often see them corresponding to Web pages or
GUI screens. You may also see multiple Data Transfer Objects for an order,
depending on the particular screen. Of course, if different presentations require
similar data, then it makes sense to use a single Data Transfer Object to handle
them all.

A related question to consider is using a single Data Transfer Object for a
whole interaction versus different ones for each request. Different Data Trans-
fer Objects make it easier to see what data is transferred in each call, but leads
to a lot of Data Transfer Objects. One is less work to write, but makes it harder
to see how each call transfers information. I’m inclined to use just one if there’s
a lot of commonality over the data, but I don’t hesitate to use different Data
Transfer Objects if a particular request suggests it. It’s one of those things you
can’t make a blanket rule about, so I might use one Data Transfer Object for

eaa.book Page 402 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 403

Data Transfer
Object

most of the interaction and use different ones for a couple of requests and
responses.

A similar question is whether to have a single Data Transfer Object for both
request and response or separate ones for each. Again, there’s no blanket rule. If
the data in each case is pretty similar, use one. If they’re very different, I use two.

Some people like to make Data Transfer Objects immutable. In this scheme
you receive one Data Transfer Object from the client and create and send back
a different one, even if it’s the same class. Other people alter the request Data
Transfer Object. I don’t have any strong opinions either way, but on the whole
I prefer a mutable Data Transfer Object because it’s easier to put the data in
gradually, even if you make a new object for the response. Some arguments in
favor of immutable Data Transfer Object have to do with the naming confu-
sion with Value Object (486).

A common form for Data Transfer Object is that of a Record Set (508), that
is, a set of tabular records—exactly what you get back from a SQL query.
Indeed, a Record Set (508) is the Data Transfer Object for a SQL database.
Architectures often use it throughout the design. A domain model can generate
a Record Set (508) of data to transfer to a client, which the client treats as if it
was coming directly from SQL. This is useful if the client has tools that bind to
Record Set (508) structures. The Record Set (508) can be entirely created by the
domain logic, but more likely it’s generated from a SQL query and modified by
the domain logic before it’s passed on to the presentation. This style lends itself
to Table Module (125).

Another form of Data Transfer Object is as a generic collection data struc-
ture. I’ve seen arrays used for this, but I discourage that because the array indi-
ces obscure the code. The best collection is a dictionary because you can use
meaningful strings as keys. The problem is that you lose the advantage of an
explicit interface and strong typing. A dictionary can be worth using for ad hoc
cases when you don’t have a generator at hand, as it’s easier to manipulate one
than to write an explicit object by hand. However, with a generator I think
you’re better off with an explicit interface, especially when you consider that it
is being used as communication protocol between different components.

Serializing the Data Transfer Object Other than simple getters and setters, the
Data Transfer Object is also usually responsible for serializing itself into some
format that will go over the wire. Which format depends on what’s on either
side of the connection, what can run over the connection itself, and how easy
the serialization is. A number of platforms provide built in serialization for sim-
ple objects. For example, Java has a built-in binary serialization and .NET has

eaa.book Page 403 Monday, October 7, 2002 8:20 AM

404 DISTRIBUTION PATTERNS

Data Transfer
Object

built-in binary and XML serializations. If there’s a built-in serialization, it usu-
ally works right out of the box because Data Transfer Objects are simple struc-
tures that don’t deal with the complexities you run into with objects in a
domain model. As a result I always use the automatic mechanism if I can.

If you don’t have an automatic mechanism, you can usually create one your-
self. I’ve seen several code generators that take a simple record descriptions and
generate appropriate classes to hold the data, provide accessors, and read and
write the data serializations. The important thing is to make the generator only
as complicated as you actually need it to be, and don’t try to put in features you
only think you’ll need. It can be a good idea to write the first classes by hand
and then use them to help you write the generator.

You can also use reflective programming to handle the serialization. That
way you only have to write the serialization and deserialization routines once
and put them in a superclass. There may be a performance cost to this; you’ll
have to measure it to find out if the cost is significant.

You have to choose a mechanism that both ends of the connection will work
with. If you control both ends, you pick the easiest one; if you don’t, you may
be able to provide a connector at the end you don’t own. Then you can use a
simple Data Transfer Object on both sides of the connection and use the con-
nector to adapt to the foreign component.

One of the most common issues you face with Data Transfer Object is
whether to use a text or a binary serialization form. Text serializations are easy
to read to learn what’s being communicated. XML is popular because you can
easily get tools to create and parse XML documents. The big disadvantages
with text are that it needs more bandwidth to send the same data (something
particularly true of XML) and there’s often a performance penalty, which can
be quite significant.

An important factor for serialization is the synchronization of the Data
Transfer Object on each side of the wire. In theory, whenever the server changes
the definition of the Data Transfer Object, the client updates as well but in
practice this may not happen. Accessing a server with an out-of-date client
always leads to problems, but the serialization mechanism can make the prob-
lems more or less painful. With a pure binary serialization of a Data Transfer
Object the result will be that its communication is entirely lost, since any
change to its structure usually causes an error on deserialization. Even an
innocuous change, such as adding an optional field, will have this effect. As a
result direct binary serialization can introduce a lot of fragility into the commu-
nication lines.

eaa.book Page 404 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 405

Data Transfer
Object

Other serialization schemes can avoid this. One is XML serialization, which
can usually be written in a way that makes the classes more tolerant of changes.
Another is a more tolerant binary approach, such as serializing the data using a
dictionary. Although I don’t like using a dictionary as the Data Transfer Object,
it can be a useful way of doing a binary serialization of the data, since that
introduces some tolerance into the synchronization.

Assembling a Data Transfer Object from Domain Objects A Data Transfer Ob-
ject doesn’t know about how to connect with domain objects. This is because
it should be deployed on both sides of the connection. For that reason I don’t
want the Data Transfer Object to be dependent on the domain object. Nor do
I want the domain objects to be dependent of the Data Transfer Object since
the Data Transfer Object structure will change when I alter interface formats.
As a general rule, I want to keep the domain model independent of the exter-
nal interfaces.

As a result I like to make a separate assembler object responsible for creating
a Data Transfer Object from the domain model and updating the model from it
(Figure 15.4). The assembler is an example of a Mapper (473) in that it maps
between the Data Transfer Object and the domain objects.

I may also have multiple assemblers share the same Data Transfer Object. A
common case for this is different update semantics in different scenarios using

Figure 15.4 An assembler object can keep the domain model and the data transfer
objects independent of each other.

Domain Object

serialize
deserialize

Data Transfer Object

createDataTransferObject (DomainObject)
updateDomainObject (DataTransferObject)
createDomainObject (DataTransferObject)

Assembler

eaa.book Page 405 Monday, October 7, 2002 8:20 AM

406 DISTRIBUTION PATTERNS

Data Transfer
Object

the same data. Another reason to separate the assembler is that the Data Trans-
fer Object can easily be generated automatically from a simple data description.
Generating the assembler is more difficult and indeed often impossible.

When to Use It

Use a Data Transfer Object whenever you need to transfer multiple items of
data between two processes in a single method call.

There are some alternatives to Data Transfer Object, although I’m not a fan
of them. One is to not use an object at all but simply to use a setting method
with many arguments or a getting method with several pass-by reference argu-
ments. The problem is that many languages, such as Java, allow only one object
as a return value, so, although this can be used for updates, it can’t be used for
retrieving information without playing games with callbacks.

Another alternative is to use a some form of string representation directly,
without an object acting as the interface to it. Here the problem is that everything
else is coupled to the string representation. It’s good to hide the precise represen-
tation behind an explicit interface; that way, if you want to change the string or
replace it with a binary structure, you don’t have to change anything else.

In particular, it’s worth creating a Data Transfer Object when you want to
communicate between components using XML. The XML DOM is a pain in
the neck to manipulate, and it’s much better to use a Data Transfer Object that
encapsulates it, especially since the Data Transfer Object is so easy to generate.

Another common purpose for a Data Transfer Object is to act as a common
source of data for various components in different layers. Each component
makes some changes to the Data Transfer Object and then passes it on to the
next layer. The use of Record Set (508) in COM and .NET is a good example of
this, where each layer knows how to manipulate record set based data, whether
it comes directly from a SQL database or has been modified by other layers.
.NET expands on this by providing a built-in mechanism to serialize record sets
into XML.

Although this book focuses on synchronous systems, there’s an interesting
asynchronous use for Data Transfer Object. This is where you want to use an
interface both synchronously and asynchronously. Return a Data Transfer
Object as usual for the synchronous case; for the asynchronous case create a
Lazy Load (200) of the Data Transfer Object and return that. Connect the
Lazy Load (200) to wherever the results from the asynchronous call should
appear. The user of the Data Transfer Object will block only when it tries to
access the results of the call.

eaa.book Page 406 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 407

Data Transfer
Object

Further Reading

[Alur et al.] discuss this pattern under the name Value Object, which I said ear-
lier is equivalent to my Data Transfer Object; my Value Object (486) is a differ-
ent pattern entirely. This is a name collision; many people have used “Value
Object” in the sense that I use it. As far as I can tell, its use to mean what I call
Data Transfer Object occurs only within the J2EE community. As a result, I’ve
followed the more general usage.

The Value Object Assembler [Alur et al.] is a discussion of the assembler. I
chose not to make it a separate pattern, although I use the “assembler” name
rather than a name based on Mapper (473).

 [Marinescu] discusses Data Transfer Object and several implementation
variants. [Riehle et al.] discuss flexible ways to serialize, including switching
between different forms of serialization.

Example: Transferring Information About Albums (Java)

For this example I’ll use the domain model in Figure 15.5. The data I want to
transfer is the data about these linked objects, and the structure for the data
transfer objects is the one in Figure 15.6.

The data transfer objects simplify this structure a good bit. The relevant data
from the artist class is collapsed into the album DTO, and the performers for a
track are represented as an array of strings. This is typical of the collapsing of

Figure 15.5 A class diagram of artists and albums.

title: String

Album

name: String

Artist1

title: String

Track

1 performers

*

*
*

*

eaa.book Page 407 Monday, October 7, 2002 8:20 AM

408 DISTRIBUTION PATTERNS

Data Transfer
Object

structure you see for a data transfer object. There are two data transfer objects
present, one for the album and one for each track. In this case I don’t need one
for the artist, as all the data is present on one of the other two. I only have the
track as a transfer object because there are several tracks in the album and each
one can contain more than one data item.

Here’s the code to write a Data Transfer Object from the domain model. The
assembler is called by whatever object is handling the remote interface, such as
a Remote Facade (388).

class AlbumAssembler...

public AlbumDTO writeDTO(Album subject) {
AlbumDTO result = new AlbumDTO();
result.setTitle(subject.getTitle());
result.setArtist(subject.getArtist().getName());
writeTracks(result, subject);
return result;

}
private void writeTracks(AlbumDTO result, Album subject) {

List newTracks = new ArrayList();
Iterator it = subject.getTracks().iterator();
while (it.hasNext()) {

TrackDTO newDTO = new TrackDTO();
Track thisTrack = (Track) it.next();
newDTO.setTitle(thisTrack.getTitle());
writePerformers(newDTO, thisTrack);
newTracks.add(newDTO);

}
result.setTracks((TrackDTO[]) newTracks.toArray(new TrackDTO[0]));

}
private void writePerformers(TrackDTO dto, Track subject) {

List result = new ArrayList();
Iterator it = subject.getPerformers().iterator();
while (it.hasNext()) {

Artist each = (Artist) it.next();
result.add(each.getName());

}
dto.setPerformers((String[]) result.toArray(new String[0]));

}

Figure 15.6 A class diagram of data transfer objects.

title: String
artist: String

Album DTO

title: String
performers: Array of String

Track DTO

 1 *

eaa.book Page 408 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 409

Data Transfer
Object

Updating the model from the Data Transfer Object is usually more involved.
For this example there’s a difference between creating a new album and updat-
ing an existing one. Here’s the creation code:

class AlbumAssembler...

public void createAlbum(String id, AlbumDTO source) {
Artist artist = Registry.findArtistNamed(source.getArtist());
if (artist == null)

throw new RuntimeException("No artist named " + source.getArtist());
Album album = new Album(source.getTitle(), artist);
createTracks(source.getTracks(), album);
Registry.addAlbum(id, album);

}
private void createTracks(TrackDTO[] tracks, Album album) {

for (int i = 0; i < tracks.length; i++) {
Track newTrack = new Track(tracks[i].getTitle());
album.addTrack(newTrack);
createPerformers(newTrack, tracks[i].getPerformers());

}
}
private void createPerformers(Track newTrack, String[] performerArray) {

for (int i = 0; i < performerArray.length; i++) {
Artist performer = Registry.findArtistNamed(performerArray[i]);
if (performer == null)

throw new RuntimeException("No artist named " + performerArray[i]);
newTrack.addPerformer(performer);

}
}

Reading the DTO involves quite a few decisions. Noticeable here is how to
deal with the artist names as they come in. My requirements are that artists
should already be in a Registry (480) when I create the album, so if I can’t find
an artist this is an error. A different create method might decide to create artists
when they’re mentioned in the Data Transfer Object.

For this example I have a different method for updating an existing album.

class AlbumAssembler...

public void updateAlbum(String id, AlbumDTO source) {
Album current = Registry.findAlbum(id);
if (current == null)

throw new RuntimeException("Album does not exist: " + source.getTitle());
if (source.getTitle() != current.getTitle()) current.setTitle(source.getTitle());
if (source.getArtist() != current.getArtist().getName()) {

Artist artist = Registry.findArtistNamed(source.getArtist());
if (artist == null)

throw new RuntimeException("No artist named " + source.getArtist());
current.setArtist(artist);

}
updateTracks(source, current);

eaa.book Page 409 Monday, October 7, 2002 8:20 AM

410 DISTRIBUTION PATTERNS

Data Transfer
Object

}
private void updateTracks(AlbumDTO source, Album current) {

for (int i = 0; i < source.getTracks().length; i++) {
current.getTrack(i).setTitle(source.getTrackDTO(i).getTitle());
current.getTrack(i).clearPerformers();
createPerformers(current.getTrack(i), source.getTrackDTO(i).getPerformers());

}
}

As for updates you can decide to either update the existing domain object or
destroy it and replace it with a new one. The question here is whether you have
other objects referring to the object you want to update. In this code I’m updat-
ing the album since I have other objects referring to it and its tracks. However,
for the title and performers of a track I just replace the objects that are there.

Another question concerns an artist changing. Is this changing the name of
the existing artist or changing the artist the album is linked to? Again, these
questions have to be settled on a case-by-use case basis, and I’m handling it by
linking to a new artist.

In this example I’ve used native binary serialization, which means I have to
be careful that the Data Transfer Object classes on both sides of the wire are
kept in sync. If I make a change to the data structure of the server Data Trans-
fer Object and don’t change the client, I’ll get errors in the transfer. I can make
the transfer more tolerant by using a map as my serialization.

class TrackDTO...

public Map writeMap() {
Map result = new HashMap();
result.put("title", title);
result.put("performers", performers);
return result;

}
public static TrackDTO readMap(Map arg) {

TrackDTO result = new TrackDTO();
result.title = (String) arg.get("title");
result.performers = (String[]) arg.get("performers");
return result;

}

Now, if I add a field to the server and use the old client, although the new field
won’t be picked up by the client, the rest of the data will transfer correctly.

eaa.book Page 410 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 411

Data Transfer
Object

Of course, writing the serialization and deserialization routines like this is
tedious. I can avoid much of this tedium by using a reflective routine such as
this on the Layer Supertype (475):

class DataTransferObject...

public Map writeMapReflect() {
Map result = null;
try {

Field[] fields = this.getClass().getDeclaredFields();
result = new HashMap();
for (int i = 0; i < fields.length; i++)

result.put(fields[i].getName(), fields[i].get(this));
} catch (Exception e) {throw new ApplicationException (e);
}
return result;

}
public static TrackDTO readMapReflect(Map arg) {

TrackDTO result = new TrackDTO();
try {

Field[] fields = result.getClass().getDeclaredFields();
for (int i = 0; i < fields.length; i++)

fields[i].set(result, arg.get(fields[i].getName()));
} catch (Exception e) {throw new ApplicationException (e);
}
return result;

}

Such a routine will handle most cases pretty well (although you’ll have to add
extra code to handle primitives).

Example: Serializing Using XML (Java)

As I write this, Java’s XML handling is very much in flux and APIs, still volatile,
are generally getting better. By the time you read it this section may be out of
date or completely irrelevant, but the basic concept of converting to XML is
pretty much the same.

First I get the data structure for the Data Transfer Object; then I need to
decide how to serialize it. In Java you get free binary serialization simply by
using a marker interface. This works completely automatically for a Data
Transfer Object so it’s my first choice. However, text-based serialization is often
necessary. For this example then, I’ll use XML.

eaa.book Page 411 Monday, October 7, 2002 8:20 AM

412 DISTRIBUTION PATTERNS

Data Transfer
Object

For this example, I’m using JDOM since that makes working with XML
much easier than using the W3C standard interfaces. I write methods to read
and write an XML element to represent that class each Data Transfer Object
class.

class AlbumDTO...

Element toXmlElement() {
Element root = new Element("album");
root.setAttribute("title", title);
root.setAttribute("artist", artist);
for (int i = 0; i < tracks.length; i++)

root.addContent(tracks[i].toXmlElement());
return root;

}
static AlbumDTO readXml(Element source) {

AlbumDTO result = new AlbumDTO();
result.setTitle(source.getAttributeValue("title"));
result.setArtist(source.getAttributeValue("artist"));
List trackList = new ArrayList();
Iterator it = source.getChildren("track").iterator();
while (it.hasNext())

trackList.add(TrackDTO.readXml((Element) it.next()));
result.setTracks((TrackDTO[]) trackList.toArray(new TrackDTO[0]));
return result;

}

class TrackDTO...

Element toXmlElement() {
Element result = new Element("track");
result.setAttribute("title", title);
for (int i = 0; i < performers.length; i++) {

Element performerElement = new Element("performer");
performerElement.setAttribute("name", performers[i]);
result.addContent(performerElement);

}
return result;

}
static TrackDTO readXml(Element arg) {

TrackDTO result = new TrackDTO();
result.setTitle(arg.getAttributeValue("title"));
Iterator it = arg.getChildren("performer").iterator();
List buffer = new ArrayList();
while (it.hasNext()) {

Element eachElement = (Element) it.next();
buffer.add(eachElement.getAttributeValue("name"));

}
result.setPerformers((String[]) buffer.toArray(new String[0]));
return result;

}

eaa.book Page 412 Monday, October 7, 2002 8:20 AM

DATA TRANSFER OBJECT 413

Data Transfer
Object

Of course, these methods only create the elements in the XML DOM. To per-
form the serialization I need to read and write text. Since the track is trans-
ferred only in the context of the album, I just need to write this album code.

class AlbumDTO...

public void toXmlString(Writer output) {
Element root = toXmlElement();
Document doc = new Document(root);
XMLOutputter writer = new XMLOutputter();
try {

writer.output(doc, output);
} catch (IOException e) {

e.printStackTrace();
}

}
public static AlbumDTO readXmlString(Reader input) {

try {
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(input);
Element root = doc.getRootElement();
AlbumDTO result = readXml(root);
return result;

} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException();

}
}

Although it isn’t rocket science, I’ll be glad when JAXB makes this kind of stuff
unnecessary.

eaa.book Page 413 Monday, October 7, 2002 8:20 AM

eaa.book Page 414 Monday, October 7, 2002 8:20 AM

