
Excerpt From GWT in Action
ISBN 1-933988-23-1
©2007 Manning Publications
All rights reserved
www.manning.com

CHAPTER 4:

Working with Widgets

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60
www.manning.com

4.1 The standard GWT widgets
The standard GWT distribution comes with a wide range of widgets for use in your applications.
These widgets cover the types of areas you would expect: buttons, text boxes, and so forth. There are,
however, some widgets you might expect to see that are missing—things like progress bars and sliders
(though we’ll build one of those missing widgets later in chapter 7).

Within the set of widgets, the designers of GWT have implemented a strong hierarchy of Java
classes in order to provide an element of consistency across widgets where that consistency naturally
exists. Take the TextBox, TextArea, and PasswordTextBox widgets; it is not unreasonable
to expect them to share certain properties. GWT recognizes this and captures the common properties
in a TextBoxBase class, which these three widgets inherit. To get a snapshot of this hierarchy, cast
your eye over figure 4.1.

Figure 4.1 The GWT widget class hierarchy, indicating the types of event listeners that can be registered against

each widget

You can see in this hierarchy that all widgets ultimately inherit from the UIObject class, which

contains a number of essential housekeeping and property aspects. Within the UIObject class you
will find the setElement() method, which we discussed previously when it is used to set the
physical link between the widget’s Java object and DOM views. Subclasses of UIObject must call
this method as the first thing they do before any other methods are called to ensure that the link to a
browser element is established.

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Note: All GWT widgets inherit from the UIObject class, which provides a common set of
methods and attributes for all widgets, including setting size, visibility, and style names, as
well as providing the link between the Java and DOM representations.

We won’t go through all the methods in the UIObject class, but we will highlight the typical
functionality you can expect all widgets to inherit. The UIObject class allows access to a wide
range of DOM functionality without you having to access the DOM directly. For example, it is
possible to set the height of a GWT UIObject using the setHeight() method, which in turn
uses the setStyleAttribute() method from the DOM class.

public void setHeight(String height) {
 DOM.setStyleAttribute(element, "height", height);
}

The other methods written in this style include the ability to set the width, title (what is

displayed when a mouse hovers over an element), and both width and height at the same time
through the setSize() method. All of these methods take Strings as parameters, such as
setSize("100px","200px"). The setPixelSize() method allows integers, such as
setPixelSize(100,200). Although these methods for setting stylistic attributes are available,
we recommend that styling generally be performed by using Cascading Style Sheets (CSS).

After UIObject, all widgets, except TreeItem and MenuItem, must inherit from the
Widget class, which provides widgets with their “widget-ness,” including the methods that are
called when a widget is attached or detached from a panel. This class also contains the default
implementation of the onBrowserEvent() method, which allows a widget to manage any events
that it has sunk (you will see this in action in chapter 6).

In the next section we’ll look briefly at the widgets you get for free with the GWT distribution as
well as how we’ll be using them in the Dashboard application. Figure 4.2 summarizes the widgets.

Figure 4.2 Summary of widgets included within GWT

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

As we discuss the widgets during this chapter, we’ll try to show some simple code demonstrating

their use and point out where in the Dashboard application we use them. This code might start
looking a little alien in some places but don’t worry; we haven’t introduced most of the concepts used
in the code yet—they’ll be revealed in the next few chapters—but in most cases you should be able to
see what is happening.

Bear in mind a couple of principles as you read these next few sections. First, this is not intended
to be a complete walkthrough of the GWT API for widgets; to do that would border on the
excessively boring. Instead we try to show some of the key methods and pitfalls, as well as where we
have used the methods in the Dashboard application, so that you can look in the code yourself. In
general, where we define a getter method, such as getText(), the GWT API usually provides
the appropriate setter method as well, such as setText(). Finally, to keep focused, we often
do not include names or number of parameters for a method, unless it is really necessary; this allows
us to write a book focused on what can be done without getting bogged down in details—the online
GWT API reference
(http://code.google.com/webtoolkit/documentation/gwt.html) is an
invaluable source of help for the details, as is the use of a good IDE.

We’ll break our discussion of widgets down into the following five main categories of widgets
that were shown in figure 4.2: Standard, Label, Focus, Button Base, and Text Box Base widgets. Let’s
start by looking at the class of widgets we have called basic widgets.

4.1.1 Interacting with the basic widgets
We’ll define the basic widgets as those that inherit directly from the Widget class and have nothing
else getting in the way. There are five of these widgets, which we briefly consider next in the context
of the Dashboard application that we’ll be building. Sometimes, however, we show a code sample in
isolation to emphasize a particular point or property.

Uploading files with the FileUpload widget
The FileUpload widget (shown in figure 4.3) acts as a GWT wrapper to the standard browser
FileUpload text box—the one that you need to use when the user wants to upload a file from
their machine to your server.

Figure 4.3 The FileUpload widget

You must remember that this is only the client-side component—clicking the Browse button

allows users to select a file on their own computer that presents the standard File Search dialog box
but does not allow you to save a file to your server; that takes a little more work. This widget should
be embedded within a form that has its encoding set to multipart, and when ready you should submit
the form to your server to process the uploading of the file selected. This widget doesn’t provide any
server-side code to handle file upload; you have to provide that yourself, but you are free to do so in
your favorite client-side language. We’ll look at such a FileUpload in more detail when we
discuss server-side components in chapter 12, but we’ll also consider it briefly later in this chapter
when we explore building our own widgets.

The FileUpload widget is perhaps one of the most inconsistently implemented widgets across
browsers, with different browsers allowing differing security restrictions and ability to style it. Most

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

browsers, for example, will not permit you to set the default value of the text box since that would
allow a web application to go fishing for files. As with all widgets, the thing to remember is that, if
you cannot do something with the widget in HTML and JavaScript, then you cannot do it in GWT.
To that end, GWT only provides a getFilename() method that retrieves the filename selected
by a user. This method should not be confused with the getName() and setName() methods,
which are used to set the DOM name of the FileUpload widget.

But enough of file uploading until chapter 12; next let’s look at some of the other basic widgets
that GWT provides.

Navigating your application with hyperlinks
The Hyperlink widget acts as an internal hyperlink within your GWT application. To users it
appears exactly as a normal hyperlink on the web page; when they click the link, users expect some
navigation within the application to occur. In your code, this action is coded as manipulating the
GWT History object to change the application state—you can see how this works in the
Dashboard’s Slideshow application
(org.gwtbook.client.ui.calculator.Calculator). The application has two
hyperlinks placed at the bottom, as shown in figure 4.4, that enable the user to move the slideshow to
the start or the end.

Figure 4.4 Two Hyperlink widgets (Start and End) in action at the bottom of the Slideshow Dashboard

application.

Any component that uses a Hyperlink widget should also extend the HistoryListener
interface and implement the onHistoryChange() method to catch and manage clicks on the
hyperlinks. As you can see, the Dashboard’s Slideshow component implements two Hyperlinks,
which can be found in the code as

Hyperlink startLink = new Hyperlink("Start","0"); #1
Hyperlink endLink = new Hyperlink("End",""+(maxNumberImages-1)); #2

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Each Hyperlink widget constructor consists of two elements: the text that is to be displayed
on the screen and a history token (which can be any arbitrary string). In the Slideshow component’s
case, all the history tokens represent numbers of a picture, starting at 0 for the first and ending at the
maximum number of images in the slideshow, minus one. It is easy, then, to have a hyperlink to the
start and end of the slideshow by using the appropriate values in the Hyperlink constructor—“0”
for the start (as shown in [#1]) and the string representation of the largest image number (as shown in
[#2]).

When using GWT history, you must remember to include the code shown in listing 4.1 in the
body of your HTML page. Failure to do so will result in errors, which in Hosted mode are visible by
errors in the Hosted Mode console, as shown in figure 4.5.

Listing 4.1 Implementing the GWT History subsystem

<iframe id="__gwt_historyFrame"
style="width:0;height:0;border:0"></iframe>

Figure 4.5 Error raised when trying to use the GWT History subsystem without it being properly initialized

Note: The rebinding message you see in figure 4.5 is a result of some GWT manipulation
we perform later in the book using GWT generators to take the basic component application
and automatically generate some new code to show an About menu item.

Using methods in the Hyperlink class, it is easy to get the history token of a particular link

(getTargetHistoryToken()) or even update the token if you wanted to
(setTargetHistoryToken()). Similarly, you can set the hyperlink’s text or get it through the
setText() and getText() methods, respectively (or the HTML using setHTML() and
getHTML() if you have created the hyperlink so that the text is treated as HTML, using the
Hyperlink(String, boolean, String) constructor instead of the simpler
Hyperlink(String, String) version).

Treating a hyperlink text as HTML means that any markup code, such as text in bold,
underlines, or images, is displayed. If you want a normal hyperlink, to say another HTML page, then
you should use the HTML widget, which we look at a little later, rather than a Hyperlink with text
set to HTML. Hyperlinks are one way to navigate through an application; another is to use a menu
system.

Navigating your application using menus
The menu system provided by GWT is based on the MenuBar and MenuItem widgets.
MenuItems are added into MenuBars and MenuBars are added to other MenuBars in order to
create your applications menu system. Figure 4.6 shows this system in place for the Dashboard menu
system, where Clock, Calculator, and Slideshow MenuItems are added to a Create MenuBar. This
Create MenuBar as well as a Help MenuBar are then added to another MenuBar, which is
displayed on the browser page.

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Figure 4.6 MenuBar and MenuItem widgets being used in the Dashboard application

In the Dashboard (org.gwtbook.client.Dashboard), we define one global MenuBar

using the following code:

MenuBar menu = new MenuBar();

This simple line of code creates a horizontal menu bar (which we could just have easily created using
the alternative constructor that takes a Boolean parameter whose value is false to create a
horizontal menu bar, such as new MenuBar(false)). At present, the Dashboard will have two
standard menu bars; we’ll create two additional ones later in this book, and further down the
Dashboard code you’ll find two methods used to build the Create and Help menu bars. The method
buildHelpMenu(), shown in listing 4.2, builds the initial Create menu bar using vertical menu
bars. Creating vertical menu bars is performed by passing the Boolean value true as a parameter in
the constructor (see [#1]).

Listing 4.2 Building the Dashboard’s Create menu bar and menu items, together with the

nested Locale menu bar

protected MenuBar buildHelpMenu(){
 MenuBar menuHelp = new MenuBar(true); |#1
 MenuBar menuLocale = new MenuBar(true); |#1

 menuLocale.addItem(constants.EnglishLocale(),
 new ChangeLocaleToEnglishCommand()); |#2
 menuLocale.addItem(constants.SwedishLocale(),
 new ChangeLocaleToSwedishCommand());
 menuHelp.addItem(constants.LocaleMenuItemName(), menuLocale);
#3
 return menuHelp;
}
 <#1 Creates vertical MenuBars>
 <#2 Adds MenuItem to MenuBar>
 <#3 Adds MenuBar to MenuBar>

Within a MenuBar, you’ll find one or more MenuItems or other MenuBars that go together
to give the visual structure you saw in figure 4.6. It is possible to create MenuItems inline in the
code, which is exactly what we do at step [#2], where the first parameter to the addItem() method
is a new MenuItem. Each MenuItem is bound to a segment of code, the second parameter to the
addItem() method, which is executed when the user clicks that menu item.

You can use something called the command pattern to describe the command that will be
executed on a menu item click. In practice, this means that you create a new instance of either the

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

GWT Command class or a subclass, which contains an execute() method where your code is
stored. For the Dashboard, we decided to define a number of Command subclasses as inner classes to
the Dashboard, since this approach best met our needs. An example of one of these classes is shown
in listing 4.3 (this is the command that is attached to the MenuItems defined in [#2] of listing 4.2).

Listing 4.3 Providing a subclass of the Command class to change the locale of the

application to the English (default) locale

class ChangeLocaleToEnglishCommand implements Command{
 public void execute(){
 Window.removeWindowCloseListener(dashboardWindowCloseListener);
 changeLocale("");
 }
}

Using the command pattern allows the GWT application to turn a request for some future

functionality into an object that can be passed around the code, and the defined functionality can
then be invoked at a later point in time. In the case of the menu items, GWT provides the plumbing
so that when a menu item is clicked, the associated command’s execute() method is invoked. In
this example, when the user clicks a menu item whose command is set to an instance of the
ChangeLocaleToEnglishCommand class, then this execute() method is invoked, and a
WindowCloseListener is removed from the application before the changeLocale()
method is called (otherwise, we invoke both of the window closing events we set up in chapter 6—in
the case of the Dashboard, these event handlers display two alert boxes, which is something we don’t
want to happen if we’re just changing the locale).

You can interrogate a MenuItem to find out what its parent menu is by using its
getParentMenu() method. In addition, you can use its getSubMenu() method to determine
if it opens a submenu. Similarly, you can set the submenu (but not its parent menu) of a MenuItem
through the setSubMenu() method. In some applications, you might need to change the
command that is associated with a particular MenuItem (setCommand()) or even find out what
that command is, which you can do using the getCommand() method.

The final implementation aspect of a MenuItem we want to discuss relates to the text shown as
the item itself. This text can either be treated as pure text or as HTML, depending on whether a
Boolean parameter is provided in the constructor of the MenuItem. As with any widget that can
allow HTML to be set, you should always take care to avoid exposing the application to script-based
security issues. Creating a menu item using new MenuItem(String, true, Command)
treats the String as HTML.

A MenuBar widget allows you to specify whether its child menus should open automatically or
wait for the user to click them to open. You use the setAutoOpen() method to achieve this, and
in the Dashboard example, we do this in our onModuleLoad() method, where we create the
whole menu system using the code shown in listing 4.4.

Listing 4.4 Creating the Dashboard’s menu system

MenuBar menuCreate = buildCreateMenu(); |#1
MenuBar menuHelp = buildHelpMenu(); |#1
menu.addItem(constants.HelpMenuName(),menuHelp); |#2
menu.addItem(constants.CreateMenuName(),menuCreate); |#2
menu.setAutoOpen(true); |#3
 <#1 Builds SubMenus>

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

 <#2 Adds SubMenus to MenuBar >
 <#3 Sets SubMenus to open when mouseover >

At the top of the screen is the Dashboard’s menu system, as seen in figure 4.7, which is involved

a number of times in the code. We create the Help and Create menu bars as simple implementations
for an Internet view (in the Dashboard class) and then override them to provide a more functional
intranet version (in the Dashboard_intranet class). The version, intranet or Internet, which
we’ve used here, is chosen by using GWT user-defined properties and setting the
externalvisibility property in the Dashboard.html file; you’ll learn all about this in
chapter 15.

Figure 4.7 The Dashboard menu system, showing the four possible menu bars: the Help and Create menu bar are

always present, the Bookmarks menu is loaded as XML from the server, and the application’s Option menu bar is

shown when a component application gains focus.

We create the text for these two menu bars using GWT internationalization constants set up for

a default, English, locale, and an alternative Swedish locale. In chapter 15 we expand on this
internationalization approach, which we looked at briefly in chapter 3.

We also make use of the two new MenuItem widgets we’ll create later in this chapter in our
Dashboard’s menu system. When running in the intranet mode, the Help menu bar provides the user
with the ability to turn on or off the request for confirmation when they delete a component
application, and they do this through a TwoComponentMenuItem. In both modes, the user can
change the locale through two TwoComponentMenuItems: one for each locale supported by our
application. You can see the intranet view of the Help menu in action in figure 4.8, where both the
new widgets are in use.

Figure 4.8 Examining the Dashboard’s menu system and showing off the two new MenuItem widgets we built in

chapter 4

We manipulate the menu bar in two further ways. First, we create a Bookmark menu bar whose

contents are loaded from an external XML file by using the GWT implementation of the
HTTPRequest object; we covered this topic in chapter 12. Second, each component application
can register an Option menu when it gains focus, which is shown in the main menu when the
application gains focus (we use a GWT Generator, as discussed in chapter 14, to automatically
generate an About item in the Option menu for each application; this menu item lists all the
methods and fields included in the application). Figure 4.8 shows the Option menu for the Google

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Search component application. These component applications also have some generic functional
requirements placed on them.

The final point to note about the MenuBar is that it implements the PopupListener
interface, which allows functionality to be fired when the MenuBar is closed. If you wish to use
different functionality when the MenuBar closes, then you can override the existing class and
implement your own onPopupClosed() method. We don’t use this functionality in the
Dashboard, but that is how you would use it if you wished to do so.

Managing the view of data using trees
We have now nearly completed our look at most of the basic widgets in GWT, but there are two left.
The first of these is the Tree widget. This widget provides your applications with a standard
hierarchical tree widget consisting of TreeItem widgets. Figure 4.9 shows the Tree widget in
action on the left-hand side.

Figure 4.9 The Dashboard Book application showing the Tree widget on the left-hand side

You build a Tree in much the same way we built a menu earlier in this chapter. In that example

we added a number of MenuItems to our MenuBar, but here we’ll be adding TreeItems to a
Tree. The constructors for a TreeItem are flexible and allow you to create an empty TreeItem
or TreeItem from Strings or other widgets (which could mean a standard widget or a composite
widget). In listing 4.5, which comes from the Dashboard’s Book application
(org.gwtbook.client.ui.book.Book), we build a simple tree to represent the top-level
structure of our book.

Listing 4.5 Creating the Dashboard’s Book tree system

private Tree buildTOC(){
 TreeItem chapter1 = new TreeItem("1: Introducing GWT"); |#1
 chapter1.addItem("1.1: A Walk Through GWT"); |#1
 chapter1.addItem("1.2: GWT Versus Other Solutions"); |#1
 :
 TreeItem chapter2 = new TreeItem("2: Exercising the GWT Tools"); |#2
 chapter2.addItem("2.1: Setting up Dashboard Version 1"); |#2
 :

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

 TreeItem chapter3 = new TreeItem("3: Creating the Dashboard");
|#3
 chapter3.addItem("3.1: Stage 2 - Developing the Application");
|#3
 :
 Tree t = new Tree(); |#4
 t.addItem(chapter1); t.addItem(chapter2); t.addItem(chapter3); |#4
 return t;
}
 <#1 Builds Chapter 1 Tree>
 <#2 Builds Chapter 2 Tree>
 <#3 Builds Chapter 3 Tree>
 <#4 Builds Table of Contents Tree >

Unlike with the menu system, we won’t add commands to MenuItems in order to implement

functionality when they are clicked or expanded; instead, we implement a TreeListener. This
requires us to implement two methods: an onTreeItemSelected() method, which is fired
when a MenuItem is selected, and the onTreeItemStateChanged() method, which gets
invoked if the state (opened or closed) of a TreeItem changes.

For the Dashboard Book application, we implement the TreeListener shown in listing 4.6.

Listing 4.6 Creating the Dashboard’s Book tree system

Tree theTree = buildTOC();
theTree.addTreeListener(new TreeListener(){
 public void onTreeItemSelected(TreeItem item) { |#1
 changeText(item.getText()); |#2
 }

 public void onTreeItemStateChanged(TreeItem item) { |#3
 if (item.getState()){ |#4
 currChapter.setText(item.getText()); |#5
 } else {
 currChapter.setText("----------");
 }
 }
});
 <#1 Fires when TreeItem selected>
 <#2 Gets text from selected item>
 <#3 Fires when TreeItem state changes>
 <#4 Gets state of item that changed>
 <#5 Retrieves text>

This listener will call the Dashboard application’s changeText() method ([#2]) to fill in the
text box on the right of the Book application with some text when a TreeItem is selected ([#1]).
When the state of a TreeItem changes, then the onTreeItemStateChanged() method
([#3]) is called. This method retrieves the state of the MenuItem that was changed ([#4]), and if this
item is now open, it places the text of the time at the bottom of the widget by retrieving it using the
getText() method ([#5])—otherwise, it inserts some dashes as the text.

A TreeItem comes with a host of helper methods that can be invoked to learn more about or
change existing properties of the item. You can find out the child at a particular index
(getChild(int index)), count the number of children (getChildCount()), or get the
index of a particular child (getChildIndex(TreeItem)). Additionally, you can get the Tree

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

a particular TreeItem is within (getTree()), find out if an item’s children are currently
displayed (getState()), its parent item (getParentItem()), and whether it is currently
selected (isSelected()).

TreeItems may have a widget associated with them, though if it does it cannot directly have
text associated unless it’s set up as a composite widget. Quite often you might associate a CheckBox,
for example, with TreeItems. You associate a widget with a TreeItem either through the
setWidget() method or by using the TreeItem(Widget) constructor.

Viewing images
Finally, for the basic widgets, if you wish to display an image in a GWT application, the Image
widget is the one you’ll use. This widget allows images to be loaded and displayed, as you can see in
figure 4.10.

Figure 4.10 Looking at the Image widget in action in the Dashboard’s Slideshow application

An interesting aspect of the Image widget is the ability to add a LoadListener to it so that

a particular action can be performed when the image has completed loading (onLoad()), or
another action performed if an error occurs when loading the image (onError()).

Tip: The LoadListener will only work if the Image is actually added to the browser
page, usually via a panel, which is itself added to the browser. Just creating the Java object
and adding a LoadListener is not enough to catch the events due to the way in which
the GWT event-handling system works (see chapter 6).

In listing 4.7 we show the code from the Dashboard’s Slideshow component
(org.gwt.client.ui.Slideshow.Slideshow) that could be used to preload images into
an application. The preloadImages object is actually a HorizontalPanel, which we have
added to our application specifically for the future use of preloading images. Because of the way the
GWT event mechanism works, we need to have our images loading into a component that is added
to the browser page (if they aren’t, then there is no hook into the event mechanism, and the
LoadListener is ignored). However, there is no requirement for the component to be visible,
and so in [#1] we set it to be invisible to avoid an unsightly mess!

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Listing 4.7 Preloading Slideshow Images making use of a LoadListener

Image[] testLoading = new Image[maxNumberImages];
preloadImages.setVisible(false); |#1
for(int loop=0;loop<maxNumberImages;loop++){
 testLoading[loop] = new Image(theImages[loop][1]);
 testLoading[loop].addLoadListener(new LoadListener(){ |#2
 public void onError(Widget sender) { |#3
 Window.alert("Expected Error - onError() Method works.");
 }
 public void onLoad(Widget sender) { |#4
 Window.setTitle("Loaded Image: "+imageName);
 }
 });
 preloadImages.add(testLoading[loop]);
}
 <#1 Hides panel>
 <#2 Adds LoadListener>
 <#3 Defines onError code>
 <#4 Defines onLoad code >

We add a new LoadListener at [#2] and define the onError() method to display a
JavaScript alert on the screen if there is an error ([#3]). Or if the image loads, we change the title bar
of the browser window to display the image name using the Window.setTitle() method
([#4]).

Once we have an Image object, it is possible to use the prefetch()or setUrl() method
to load a new image rather than creating new objects as we did in our example—but either way is
valid and you will make your choice as to which way you set it up in your own applications.

The only other thing about images that you should be aware of is that you might encounter some
issues when you’re using a transparent PNG image over another image in Microsoft Internet Explorer
5.5 and 6; some ugly backgrounds may be applied. But we’ll build a new widget a little later in this
chapter that overcomes these problems.

4.1.2 Displaying text on the application
The Image widget we looked at just now was useful for displaying pictures and images on the web
browser. However, a lot of your applications will need to show text either as some sort of passive
information or sometimes more actively or in a funky way. As we dig down into the hierarchy of
widgets, we find two widgets that allow us to present text on the screen: the Label and HTML
widgets.

Showing text as a label
A Label widget contains arbitrary text, which is displayed exactly as written. This means that the
Label created by the code new Label("Hi there") would appear on the browser
page exactly as “Hi there”—that is, the word “there” is not interpreted as HTML and is shown in
bold text.

It is possible to control the horizontal alignment of labels, though by default the size of a Label
is the size of the text it encloses. So right-aligning, using the command

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

theLabel.setHorizontalAlignment(HorizontalAlignmentConstant.ALIGN_RIGHT
)

would have little visible effect unless you use a style sheet (or less preferably the
theLabel.setWidth() method) to set the width of the label to be longer than the text. The
alignment that is visible within the Dashboard’s ServerStatus application
(org.gwtbook.client.ui.serverstatus.ServerStatus), as you can see in figure
4.11, is achieved by aligning Labels in a Grid panel (see chapter 5). A Label may also word-
wrap if the setWordWrap() method is called, which takes a Boolean variable set to true if the
Label should word-wrap and false otherwise.

Figure 4.11 The Dashboard’s Server Status application showing GWT Label widgets in action

GWT allows you to add ClickListener and MouseListener to a standard Label

widget, offering the possibility to capture the user trying to interact with the Label. By default no
action occurs; you have to add click or mouse listeners yourself. In the EditabelLabel widget
from chapter 7 (org.gwtbook.client.ui.EditableLabel), when a user clicks the label
we want to present a text box that the user can use to change the text of the label. We add the click
listener as shown in listing 4.8 at [#1].

Listing 4.8 Adding a ClickListener to the GWT in Action EditabelLabel widget

text = new Label(labelText);
text.setStyleName("editableLabel-label");
text.addClickListener(new ClickListener() |#1
{
 public void onClick (Widget sender){
 changeTextLabel();
 }
});
(annotation) <#1 Adds a ClickListener>

The ClickListener acts in a similar way to the Command we used in the MenuItem
widget. It registers an onClick() method that GWT will execute when the user of the application
clicks the Label.

Once you have a Label, it is possible to change the text programmatically (see listing 4.9) using
the setText() method (as well as getting the current text using the getText() method).
However, you can have a slightly more active text-presenting widget if you wish: the HTML widget.

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

Listing 4.9 Changing the Label text in the Clock application

Date d = new Date();
if (! local) {
 d = new Date(d.getTime() - (d.getTimezoneOffset() * 60 * 1000));
}
clockLabel.setText(d.getHours() + |#1
 ":" + twoDigit(d.getMinutes()) +
 ":" + twoDigit(d.getSeconds()));
(annotation) <#1 Sets Label to new time>

Making text active using the HTML widget
If we want to provide some more funkiness to your text presentation, then the HTML widget could be
exactly the component you’re looking for. It acts in the same way as a Label widget, but more
important, it interprets any text as arbitrary HTML. Whereas in the Label the text “Hi
there” was written as is, if you write the code new HTML("Hi there"), it is
displayed as “Hi there”.

The HTML widget is also useful if you wish to provide a true hyperlink. In our earlier discussion
of the Hyperlink widget, you learned that you can present what looks like a hyperlink to the user,
but when clicked it only changes the historical aspect of the application. If you use an HTML widget
instead, then you can provide proper links:

new HTML("Manning");

However, you must be careful with this widget; allowing arbitrary HTML can expose security

issues if maliciously constructed HTML is used. Also, consider whether the HTML panel that we
discuss in chapter 5 is more appropriate for your needs.

Labels and HTML are a useful way of presenting information to a user, but there is another part
to interacting with the user: capturing their input.

Dottie
Text Box
Chapter 4 from GWT in Action

http://www.manning.com/affiliate/idevaffiliate.php?id=221_60

