
CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

11
Building AJAX JSF Components

The term AJAX has been bandied about the blogosphere since early 2005, though the
technology behind the term is nothing new. It was coined by Mr. Jesse James Garrett
of the software consulting firm AdaptivePath. AJAX, which is short for Asynchronous

JavaScript and XML, describes a set of practices for building Web applications that result
in highly responsive applications that feel more like a “rich client” application instead of
a traditional Web application. It is now becoming the technology of choice for a new
generation of rich client JSF components that offer the page author unsurpassed power
without increasing development complexity. At the same time, it provides a superior, rich
client experience for the end user. It is a technology that no JSF developer can afford to ignore.

Introduction to AJAX
AJAX is an acronym for Asynchronous JavaScript and XMLHttpRequest. The XMLHttpRequest
object is a de facto standard object provided by browser-based JavaScript implementations,
and when used in an asynchronous fashion it allows the page author to communicate with
the Web server in the background of the page, without giving the user any visual cue that
this communication is occurring. The Web browser’s “spinner” does not spin, the hourglass
mouse pointer does not appear, and the browser does not “block” in any way. Using the
XMLHttpRequest in concert with standard JavaScript and DOM APIs allows the page
author to dynamically update the page with arbitrary server-supplied data.

The first implementation of an API for background-based asynchronous communication
with the server came from Microsoft in the form of their XMLHTTP ActiveX object. This
API was later emulated in a compatible fashion by Netscape and other browsers, enabling
users to write Web applications that use XMLHttpRequest and still run on a variety of
browsers while minimizing the amount of browser-dependent code required. It has taken a
long time to arrive at the point where most users can be assumed to have a browser capable
of AJAX, but as of this writing it’s a safe bet.

Even though these technologies had been around for several years their widespread
use in Web applications didn’t catch on until Google showed the world how powerful a
first-class application of AJAX practices can be. The introduction in 2004 of Google’s e-mail
service, which makes heavy use of XMLHttpRequest techniques, inspired a renaissance
of interest in JavaScript that ultimately led to what people now call AJAX. Google’s map
service also leverages AJAX techniques to good effect. As of this writing, the field of
innovation is still wide open and the best practices have yet to fully emerge.

287

CHAPTER

ch11.indd 287ch11.indd 287 8/9/2006 11:56:35 AM8/9/2006 11:56:35 AM

288 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Why All the Interest in AJAX?
The software industry has always grappled with the problem of maintenance costs,
particularly in large enterprises where huge numbers of users need to have current
software updates, bug fixes, and other changes. The problem wasn’t so bad in the
mainframe days, but with the advent of the PC and the office LAN, things got much
worse. Each computing node had its own user-configurable and updateable software
stack. Rolling out upgrades to all users was a complex and risky problem. Solving this
problem is the main reason for the popularity of Web-deployed applications. Web
applications delivered on the promise of downloadable applications that effectively
maintained no state information in the client. This enabled administrators to easily
upgrade the software with much less risk of downtime for all users.

As shown in the history lesson in Chapter 1, Web applications have been developing in
several dimensions. Pertinent to this discussion is the degree to which a Web application
resembles a traditional, non-browser-based application in terms of responsiveness and
richness of experience. Applets address this problem quite well, but have failed, for a number
of technical and non-technical reasons, to achieve widespread adoption. JavaWebStart, a
technology that enables distributing, upgrading, and versioning Java applications via the
Web, also addresses this problem very well and its use has been steadily growing. However,
a JavaWebStart application doesn’t run inside the confines of a browser, and many users and
IT managers insist that their applications run in a browser. Thus, every Web application
framework aspires to be as rich as possible. As Google and others have shown, AJAX makes
it possible to bring the Web application experience a lot closer to the rich client experience.

Why JSF and AJAX Are a Perfect Match
As you will see later in this chapter, employing AJAX-only practices by hand is very tricky
and error prone, and can be very frustrating for Web developers or page authors. It’s
particularly difficult dealing with browser quirks to achieve a solution that will run for as
many users as possible. For example, the very way in which you obtain a reference to an
XMLHttpRequest object differs across different browsers, even though the API is the same
once you have it. The powerful encapsulation mechanism offered by the Faces component
and event model is ideally suited to allow a component developer to provide AJAX-enabled
(or AJAXian) components that are no more difficult to use than any other normal Faces
component.

The remainder of this chapter will cover the fundamentals of AJAX APIs, build on the
earlier material of creating custom components by showing how to bring AJAX practices to
your component development, review two AJAX JSF component examples, and close with
some tips and tricks to ease the pain of developing an AJAXian Faces component. Through
the course of covering this material, you will see a fair amount of JavaScript. A thorough
treatment of JavaScript is beyond the scope of this book, but an excellent reference is
JavaScript: The Complete Reference, Second Edition by Thomas Powell (McGraw-Hill, 2004).

AJAX Under the Hood
Before building AJAX-enabled JSF components, it is important to fully understand the core
AJAX architecture involved in an AJAX client-server transaction. In its simplest form, AJAX
is possible when these two core technologies are present:

ch11.indd 288ch11.indd 288 8/9/2006 11:58:32 AM8/9/2006 11:58:32 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 289

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

• A JavaScript-enabled browser that supports either XMLHTTP or XMLHttpRequest
objects

• An HTTP server technology that can respond in XML or any markup

Since the popular browsers support JavaScript and the necessary XMLHTTP request
objects and almost any Web server technology can generate XML (or any markup), the core
AJAX technology is already widely available. The architecture for an AJAX-only (no JSF
involved) application using these technologies is depicted in Figure 11-1.

As you can see in Figure 11-1, an AJAX application in its simplest form is essentially a
standard HTML user interface with JavaScript functions to interact with an HTTP server
that can generate XML dynamically. Any dynamic Web technology ranging from CGI or
servlets to JavaServer Faces, as we’ll discuss later, can serve as a server-side AJAX technology.
In the user interface, you’ll find an HTML page with elements such as an input field, a
button, or anything else that can be linked to JavaScript that can communicate via AJAX
to a Web server. For example, a button could fire a JavaScript function when pressed and
it in turn issues an AJAX request for data. An even more subtle usage would eliminate the
button altogether: simply typing in an input field could fire a JavaScript function. This is
possible using the JavaScript onkeyup event. For example, the input field searchField could
call a JavaScript function lookup() when an onkeyup event occurs (i.e., during typing), as
shown here:

<input type="text" id="searchField" size="20"
 onkeyup="lookup('searchField');">

The lookup() function could then make an AJAX request for data related to the value in
the input field. As you’ll see later in the chapter, both of the AJAX examples operate exactly in
this fashion where text from an input field is sent to an AJAX-enabled server and a response
is then provided to the client without the need for a complete page refresh.

FIGURE 11-1 The core AJAX architecture

ch11.indd 289ch11.indd 289 8/9/2006 11:58:33 AM8/9/2006 11:58:33 AM

290 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

In addition to responding to user interface interactions like typing or clicking a button,
AJAX JavaScript functions can operate independently on their own by using timers—for
example, if you want a Web form to have the ability to autosave itself after a certain amount
of time has passed.

How to Issue an XML HTTP Request
Now that you know how AJAX JavaScript code can be invoked, let’s examine the actual
JavaScript code that can issue an XML HTTP request. The following code snippet allows
both major browser families (Internet Explorer and Mozilla/Safari) to instantiate respective
browser-compatible XMLHttpRequest objects, which can then be used to communicate
with an AJAX server.

if (window.XMLHttpRequest) {
 req = new XMLHttpRequest();
}
else if (window.ActiveXObject) {
 req = new ActiveXObject("Microsoft.XMLHTTP");
}

Once the object is instantiated, it can be manipulated in exactly the same manner, regardless
of browser type, since it has compatible methods. (A full list of the XMLHttpRequest methods
and properties is provided in the “AJAX XMLHttpRequest Reference” section at the end of the
chapter.)

To initialize a connection to a server, the open method is used:

req.open("GET", url, true);

The first argument is the HTTP method (GET or POST). The second argument is the URL
of the server (or form action if using a POST), and the third argument, when true, denotes
whether the call should be made asynchronously (the “A” in AJAX) or not. This means that
the browser can continue doing other things while the request is being fulfilled. A false
value in the open method denotes a non-asynchronous or serial processing. This is not
recommended, since your browser will cease operations until the response has been returned.

For asynchronous calls, an onreadystatechange call can be made to register a callback
function that will be invoked once the request is complete:

req.onreadystatechange = processXMLResponse;

In this example the callback function is declared as processXMLResponse(). This function
is invoked by the browser when the request is fulfilled and is responsible for taking action
on the XML response. The callback function can also be declared inline in the
onreadystatechange statement:

req.onreadystatechange = processXMLResponse() {
 // process request
};

Any HTTP request header content can be specified using req.setRequestHeader. For
example:

req.setRequestHeader("Cookie", "someKey=true");

ch11.indd 290ch11.indd 290 8/9/2006 11:58:33 AM8/9/2006 11:58:33 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 291

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Once the XMLHttpRequest object (req) has been fully initialized, initiating a call to the
server can be done using send():

req.send(null);

For GET requests, a null value or empty string ("") is used. POST requests contain a
string argument with form data. They also require the Content-Type to be set in the header
of the request. The following lines show how to perform an AJAX POST to an AJAX server
(/ajaxserver), with form parameters specified in the send call.

req.open("POST", "/ajaxserver", true);
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded";
req.send("name=scott&email=stiger@foocorp.com");

The callback function processXMLResponse has some code to make sure the request
has not errored out. This is accomplished by checking the readyState as well as the overall
status of the HTTP request. (A readystate of 4 means the XMLHttpRequest is complete and
a status of 200 means it was a success (as opposed to 404, etc.).)

function processXMLResponse() {
 if (xmlreq.readyState == 4) {
 if (xmlreq.status == 200) {
 // Process the XML response…
 }
 }
}

When no error conditions have been encountered, processing the XML response is done
using standard JavaScript DOM methods. For example, to extract the employee name, “Joe”,
from the incoming XML stream:

<employee>
 Joe
</employee>

one can use req.responseXML:

var name = req.responseXML.getElementsByTagName("employee")[0];

Parsing more complex XML involves iterating through the XML elements using code
such as:

var elements = req.responseXML.getElementsByTagName("employee");
for (i=0;i<elements.length;i++) {
 for (j=0;j<elements[i].childNodes.length;j++) {
 var ElementData = elements[i].childNodes[j].firstChild.nodeValue;
 }
}

Using XMLHttpRequest with HTML
It should also be stated that the XML response obtained through the XMLHttpRequest
object need not always be well-formed and valid. This means that the AJAX server can send
over HTML content directly to the client. JavaScript code can then retrieve the HTML content

ch11.indd 291ch11.indd 291 8/9/2006 11:58:33 AM8/9/2006 11:58:33 AM

292 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

by using the req.responseText method/property, which simply retrieves the content as a
string. The HTML string text can then be used in whatever fashion to alter the page. For
example, an HTML stream of:

<h3>Hello there!</h3>
<p> This is <cTypeface:Bold>HTML</p>

could be retrieved into a string using:

var HTMLcontent = req.responseText;

and then added to a specific DIV tag with id=”div1”.

document.getElementById("div1").innerHTML += HTMLcontent;

Having stepped through the basics of an AJAX transaction, let’s consider a first AJAX
example: DirectorySearch. This example will first be presented as a pure AJAX-only example
without Faces technology. Later you’ll see how to turn this and other AJAX examples into
AJAX-enabled JSF components, making them much easier to use from a page author’s
perspective.

DirectorySearch—A First AJAX Example Without JSF
Consider the following DirectorySearch example application where the user is presented
with a single input text field. When the user begins typing characters into the field, a list
of corresponding matches from a fictitious corporation’s employee directory appears, as
shown in Figure 11-2.

As the user continues typing, the list decreases in size until a best match is found, as
depicted in Figure 11-3. The user doesn’t even have to click on a Submit button because
the page updates itself with the closest matches based on the input so far. This all occurs
without requiring a traditional page submission and a complete refresh cycle.

The Architecture of the AJAX(-Only) DirectorySearch
The DirectorySearch AJAX example consists of the following elements:

• An HTML page, directory.html, that contains:

• An input text field

• JavaScript functions that react to the characters entered and invoke an AJAX
request, then update the UI with data from the response

• A Java servlet that responds to the AJAX request by sending XML responses

Each is examined next.

The HTML Page
As mentioned earlier in the chapter, the AJAX request is initiated when new text is entered
into the input field. This occurs because the input field in the HTML page has an onkeyup
attribute set with a reference to a JavaScript lookup() function.

<input type="text" id="searchField" size="20"
 onkeyup="lookup('searchField');">

Notice the ID of searchField is passed to the lookup() function, which then uses this to
determine the current value of the field in the callback function.

ch11.indd 292ch11.indd 292 8/9/2006 11:58:33 AM8/9/2006 11:58:33 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 293

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

FIGURE 11-2 Entering a character into the AJAX DirectorySearch

FIGURE 11-3 Typing more characters into the DirectorySearch input fi eld

ch11.indd 293ch11.indd 293 8/9/2006 11:58:33 AM8/9/2006 11:58:33 AM

294 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The JavaScript lookup() function along with the other functions are embedded inside
of a pair of <script> tags in the header of the HTML page. In the lookup() function shown
next, notice that its purpose is to initiate the AJAX call with a URL of ajaxdirectoryservice,
which is the url-mapping of the AJAX servlet. It passes the value of the searchField input
field to the AJAX servlet using the input parameter:

<script type="text/JavaScript">

// Note that using global variables to store such things as the
// XMLHttpRequest instance is not a good idea in a production
// environment. This is because multiple requests from the
// same browser window will overwrite the previously stored value.
// One production grade solution is to use JavaScript "closures",
// which are beyond the scope of this book.
var req;
var writeloc;

function lookup(field) {
 writeloc = field + ":table";
 var searchField = document.getElementById(field);
 var url = "ajaxdirectoryservice?input=" + searchField.value;
 if (window.XMLHttpRequest) {
 req = new XMLHttpRequest();
 }
 else if (window.ActiveXObject) {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 }
 req.open("GET", url, true);
 req.onreadystatechange = processXMLResponse;
 req.send(null);
}

Once the request is initiated in asynchronous mode, the processXMLResponse() callback
function, shown next, will be invoked when the request is complete. This function merely
checks to see that the request from the servlet completed successfully and is sent to a data
rendering function, renderTable().

function processXMLResponse() {
 if (req.readyState == 4) {
 if (req.status == 200) {
 renderTable();
 }
 }
}

The data retrieved from the servlet in this example is pure XML and is based on the
input text that was supplied to it. For example, if a string of “sc” is sent to the servlet, it
will respond with the following matching content in XML:

<?xml version = '1.0'?>
<directory>
 <employee>
 <NAME>Chris Schultz</NAME>
 <TITLE>JSF Developer</TITLE>

ch11.indd 294ch11.indd 294 8/9/2006 11:58:34 AM8/9/2006 11:58:34 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 295

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

 <EMAIL>cschultz@foocorp.com</EMAIL>
 <PHONE>1-408-555-8658</PHONE>
 </employee>
 <employee>
 <NAME>Scott Borland</NAME>
 <TITLE>Electrical Engineer</TITLE>
 <EMAIL>sborland@foocorp.com</EMAIL>
 <PHONE>1-408-555-2834</PHONE>
 </employee>
</directory>

The renderTable() JavaScript function is as follows:

function renderTable()
 {
 xmlDoc = req.responseXML;
 var elements = xmlDoc.getElementsByTagName('employee');
 var table = document.createElement('table');
 table.setAttribute('cellPadding',3);
 table.setAttribute('border',0);
 var tbody = document.createElement('tbody');
 table.appendChild(tbody);
 var h_row = document.createElement('tr');

 for (i=0;i<elements[0].childNodes.length;i++) {
 if (elements[0].childNodes[i].nodeType != 1) continue;
 var t_header = document.createElement('th');
 var headerData =
document.createTextNode(elements[0].childNodes[i].nodeName);
 t_header.appendChild(headerData);
 h_row.appendChild(t_header);
 }
 tbody.appendChild(h_row);

 for (i=0;i<elements.length;i++) {
 var t_row = document.createElement('tr');
 for (j=0;j<elements[i].childNodes.length;j++) {
 if (elements[i].childNodes[j].nodeType != 1) continue;
 var td = document.createElement('td');
 var tdData =
document.createTextNode(elements[i].childNodes[j].firstChild.nodeValue);
 td.appendChild(tdData);
 t_row.appendChild(td);
 }
 tbody.appendChild(t_row);
 }

 // Clear previous table
 var element = document.getElementById(writeloc);
 while(element.hasChildNodes())
 element.removeChild(element.firstChild);

 // Append new table
 document.getElementById(writeloc).appendChild(table);
}

ch11.indd 295ch11.indd 295 8/9/2006 11:58:34 AM8/9/2006 11:58:34 AM

296 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The code may seem a bit cryptic, but essentially it just loops through the XML data,
constructs a new HTML table with the data in it, and appends it to a specified write
location, writeloc, which is a DIV defined just below the input text field. The DIV that
serves as the write location writeloc is defined as:

<div id="searchField:table"></div>

Also recall that writeloc was defined in the lookup() function as a concatenation of the
field name provided and :table:

 writeloc = field + ":table";

Before writing the new HTML table, however, the renderTable() function removes the
old HTML results table just before it appends the new one. The DIV that serves as the write
location writeloc is defined as:

<div id="searchField:table"></div>

The AJAXDirectory Servlet
The servlet that responds to the request and processes the incoming input parameter is
fairly simple and is displayed next.

package com.jsfcompref.ajax.servlet;
public class AjaxDirectoryService extends HttpServlet {
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType("text/xml");
 response.setHeader("Cache-Control", "no-cache");

 XmlGenerator myXmlGenerator =
 new XmlGenerator(request.getParameter("input"));

 String xmlout = myXmlGenerator.getXmlResponse();
 PrintWriter out = response.getWriter();
 out.write(xmlout);
 out.close();
 }
}

Aside from being a typical HTTPServlet, the key things to notice are that the content type
is set to text/xml and a header parameter, Cache-Control, is set to no-cache. This prevents any
of the XML data from being cached by the browser. Notice also the XMLGenerator class. This
is a custom class that does the XML generation. It can use any technology as long as it can
accept a string argument and return an XML data stream as a query result. XPath or XQuery
could be used to process these queries. XML-enabled databases such as Oracle and its XML
SQL utility can also be used to generate the query response. Since the code varies on how to
generate an XML response based on a query string, you can decide how to best perform this
task. You may also want to look into the XQuare open source project (formerly known as
XQuark), which provides an XML query (XQuery) engine equally across the leading database
technologies. (For more information on XQuare, see http://xquare.objectweb.org/.)

ch11.indd 296ch11.indd 296 8/9/2006 11:58:34 AM8/9/2006 11:58:34 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 297

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

What’s Wrong with the AJAX-Only Version of DirectorySearch?
Although fully functional, there is a potential problem with the architecture of the pure
AJAX-only DirectorySearch example application. It forces the page author to bear full
responsibility for making the AJAX transaction work because the AJAX plumbing is
manually constructed using JavaScript in the HTML client. Because of the complexities
involved, this is a task that could overburden a typical page author or Web designer,
especially if the overall user interface is considerably larger. Considering the inherent
difficulties in debugging JavaScript code, this could prove to be a painful task for even the
most technically experienced page author or Web designer. Another complexity that must
be faced is the possibility of having multiple AJAX requests and responses going on in the
page at the same time. It’s possible that multiple different servlets would be needed to
handle all the different kinds of responses. Without careful planning, extremely cryptic
conditions can arise that are very difficult to debug.

The ideal solution would be to offer an AJAX-enabled DirectorySearch custom JSF
component that the page author can simply drop onto a page and it just works. In this
manner, the page author would not have to code a single line of JavaScript as the JSF
component assumes this responsibility entirely.

Building AJAX-Enabled JSF Components
Most of the remainder of the chapter is devoted to describing how to build AJAX-enabled
JSF components, which provide an extremely easy development experience for the page
author. We will begin by describing the high-level AJAX elements needed when using JSF.

The High-Level Elements of an AJAX System in JSF
Figure 11-4 shows the elements of an AJAX system using JSF and how they work together
during an AJAX transaction. The AJAX JavaScript code (Element 1) converts user interactions
with the rendered UI of the AJAX UI component (Element 2) into parameters on the
XMLHttpRequest and sends them to an AJAX processing server component (Element 3).
The AJAX processing server component can be either independent of the JSF application,
such as with a generic servlet, or integrated into the JSF application, but its job remains the
same: return an AJAX response to the client’s AJAX request. The AJAX script, which made
the request, is then responsible for interpreting the AJAX response and updating the
browser page accordingly.

The AJAX Script in the Browser
Similar to the non-JSF AJAX architecture, JavaScript client code is required for interaction
with the AJAX server object. The key difference from the non-JSF AJAX approach is
that the JSF component or application is now entirely responsible for rendering the
script into the browser, thus drastically simplifying AJAX development for the page
author. From the component developer’s perspective, however, the key challenge is
implementing a way to render the JavaScript to the client. In HTML there are two
ways the script can be loaded into the browser. The first is inline—that is within the
body of <script> tags.

<script type="text/JavaScript">
 // This is an inline script.
 document.write("hello world");
</script>

ch11.indd 297ch11.indd 297 8/9/2006 11:58:34 AM8/9/2006 11:58:34 AM

298 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The second way is by reference—using the <script> tag with a src attribute that allows
the browser to download the script as a separate file:

<script type="text/JavaScript" src="ajaxScript.js"></script>

NOTENOTE When using the src attribute and omitting the nested script content, the closing </script>
tag is optional, but it’s a good practice to keep your markup well-formed to ease a possible future
transition to XHTML or other XML formats.

There are pros and cons to both approaches. For example, the latter approach avoids the
need to redeploy the application when any JavaScript changes are done since they reside in
a .js file. Also, most commonly available JavaScript libraries, such as DOJO and Prototype,
are distributed in JavaScript files. Loading these by reference allows the browser to store the
script content in the browser cache. On the other hand, the former approach is best when
custom JavaScript needs to be rendered dynamically with values only available at runtime
(such as with the slider example in Chapter 10).

The AJAX JSF examples later in the chapter use both approaches. However, they both
also completely hide the JavaScript code from the page author.

The AJAX UI Component
The UIComponent subclass plays a key role in an AJAX JSF system. During encoding,
this component renders the UI elements for the component itself, such as buttons or input
fields. These rendered UI elements provide a way for the end user to trigger any AJAX

FIGURE 11-4 The high-level elements of an AJAX system in JSF

Element 2

Element 3

Element 1

ch11.indd 298ch11.indd 298 8/9/2006 11:58:34 AM8/9/2006 11:58:34 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 299

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

transactions. In addition to the visible elements initially rendered, the UI component may
also render an empty placeholder location such as with a <DIV> tag, which can later be
used as a writeable location for dynamic content that is generated as a result of the AJAX
transactions. Finally, the UI component also renders the AJAX JavaScript, which can be
either the full source inline or a <script> tag with the src attribute as a URL reference to
the JavaScript file.

The AJAX Processing Server Component
The last element of the AJAX JSF system is the AJAX Processing Server Component. This
element receives AJAX requests from the browser and returns XML responses. An AJAX
Faces server component can be implemented as either:

• A fully independent HTTP server object such as a generic servlet, or

• An AJAX server object integrated into the JSF application. This can either be integrated
into the AJAX component’s decode() method or be component-independent but still
reside in the JSF application, such as within a PhaseListener.

In the SpellCheckTextArea example later in the chapter, the decode() method in
the component serves as the AJAX server component. The other AJAX JSF example,
DirectorySearch, uses either the decode() method or a PhaseListener to serve as the
AJAX server component.

JSF 1.2 TIPJSF 1.2 TIP JSF 1.2 introduced a new feature to define alternate JSF lifecycles specifically for
handling AJAX requests. Please see Chapter 12 for details on building a custom lifecycle. Once
you have done so, you can simply use an <init-param> element in your web.xml to identify it
as a JSF lifecycle instance to the FacesServlet.

<servlet>
 <servlet-name>ajax</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <init-param>
 <param-name>javax.faces.LIFECYCLE_ID</param-name>
 <param-value>com.foo.lifecycle.AJAX_LIFECYCLE_ID</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>ajax</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

If you have properly configured your custom LifecycleFactory as described in Chapter 12,
your custom lifecycle will be used instead of the default lifecycle. The details of an AJAX-aware
JSF lifecycle are beyond the scope of this chapter, but such an approach is used in the JavaServer
Faces Technology Extensions project on java.net: https://jsf-extensions.dev.java.net/.

An AJAX DirectorySearch JSF Component
Let’s now convert the original non-JSF AJAX DirectorySearch example shown earlier to a
JSF UI component. The new JSF version of DirectorySearch eliminates the inherent JavaScript
complexities that the page author had to deal with earlier. With this new version, the page

ch11.indd 299ch11.indd 299 8/9/2006 11:58:35 AM8/9/2006 11:58:35 AM

300 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

author simply drops the <jcr:directorysearch> tag onto the JSP page to use the component,
as shown here:

<jcr:directorysearch border="0" />

At runtime, the DirectorySearch UI component performs its job of providing a directory
lookup just like the AJAX-only version. The DirectorySearch JSF component also provides
attributes that are passed on to the underlying JavaScript. This affords the page author a
high degree of control over the component’s behavior without having to edit any JavaScript
code. For example, the same component can have a different background:

<jcr:directorysearch border="0" tablebgcolor="#99EEFF" />
This would generate a DirectorySearch component with a light blue background.

The AJAX JSF DirectorySearch Architecture
The architecture of the JSF-enabled DirectorySearch as depicted in Figure 11-5 is similar to
the non-JSF AJAX example from before, except that the JSF component performs the task of
rendering the JavaScript directly into the HTML (JSP) page. The JavaScript code then initiates
an XMLHttpRequest either to the same AJAX servlet that was used before, or to an AJAX
server component that essentially contains the same XML generation code that was used
in the servlet, but instead integrated into the JSF application. Recall that the AJAX server
object could be implemented as a JSF PhaseListener or in the decode() method of the JSF
component itself. Using the existing non-JSF AJAX servlet would be the easiest architecture if
your AJAX servlet does not need to interact much with your JSF application data; however,
if you want to take advantage of JSF features such as the Expression Language and Managed
Beans when building your AJAX server object, it is best to place the code inside the JSF
application.

FIGURE 11-5 The AJAX-enabled JSF DirectorySearch architecture

ch11.indd 300ch11.indd 300 8/9/2006 11:58:35 AM8/9/2006 11:58:35 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 301

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The AJAX Script Element for the DirectorySearch Example
For this example, embedding JavaScript inside a JSF component’s encode() method(s)
using the ResponseWriter is sufficient. This approach was used previously in the Slider
and BarChart examples of Chapter 10.

The code for rendering the AJAX script for DirectorySearch is invoked via the
encodeAjaxJavaScript() method in the component’s encodeBegin() method, shown here:

 public void encodeBegin(FacesContext context) throws IOException {
 String clientId = getClientId(context);
 encodeAjaxJavascript(context);
 encodeInputField(context, clientId);
 }

The content of encodeAjaxJavaScript() is

 private void encodeAjaxJavascript(FacesContext context)
throws IOException {
 String border = (String)getAttributes().get("border");
 String tablebgcolor = (String)getAttributes().get("tablebgcolor");
 // render Ajax-enabled Javascript only once per page
 if (!jsRenderedFlag(context)) {
 // if not rendered yet, go ahead and do it
 ResponseWriter writer = context.getResponseWriter();
 writer.startElement("script", this);
 writer.writeAttribute("type", "text/javascript", null);
 renderLookupFunction(writer);
 render_processXML_function(writer);
 render_renderTable_function(writer, border, tablebgcolor);
 writer.endElement("script");
 }
 }

The code for renderLookupFunction(), which actually generates the JavaScript function
lookup() in the browser, is presented below in an abbreviated fashion:

private void renderLookupFunction(ResponseWriter writer)
 throws IOException {
 writer.write("function lookup(field) {\n" +
 "writeloc = field + \":table\";\n" +
 "var searchField = document.getElementById(field);\n" +
 // Remainder of the ResponseWriter output omitted.
 "}\n");
}

The sources for the remaining JavaScript render methods are omitted but are similar to
the renderLookupFunction() and simply use the ResponseWriter to render JavaScript code.

The AJAX UI Component for the DirectorySearch Example
In addition to rendering the AJAX script, the component also renders the core UI element(s) of
the component. For the DirectorySearch example this is done by using the encodeInputField()
method, which is also in the component’s encodeBegin() method.

encodeInputField(context, clientId);

ch11.indd 301ch11.indd 301 8/9/2006 11:58:35 AM8/9/2006 11:58:35 AM

302 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The UI for DirectorySearch is very basic because it is just an input field along with a
<DIV>, which will serve as the write location for the results from the AJAX transaction.

public void encodeInputField(FacesContext context, String clientId)
throws IOException {
 // render a standard HTML input field along with a DIV
 ResponseWriter writer = context.getResponseWriter();
 writer.startElement("p", this);
 writer.startElement("input", this);
 writer.writeAttribute("type", "text", null);
 writer.writeAttribute("id", clientId, "clientId");
 writer.writeAttribute("size", "20", null);
 writer.writeAttribute("onkeyup", "lookup('" + clientId + "');", null);
 writer.endElement("input");
 writer.endElement("p");
 writer.startElement("div", this);
 writer.writeAttribute("id", clientId + ":table", null);
 writer.endElement("div");
 }

Notice that the lookup() JavaScript function is included as an attribute of the input field.

The AJAX Server Component for the DirectorySearch Example
As an alternative to using an external servlet to serve as the AJAX server component, the
DirectorySearch example will embed this functionality inside the component’s decode()
method, as shown here.

public void decode(FacesContext context) {
 Map requestMap = context.getExternalContext().getRequestMap();
 HttpServletResponse response = (HttpServletResponse)
 context.getExternalContext().getResponse();
 HttpServletRequest request = (HttpServletRequest)
 context.getExternalContext().getRequest();

 if (requestMap.containsKey("ajaxreq")) {
 // set the header information for the response
 response.setContentType("text/xml");
 response.setHeader("Cache-Control", "no-cache");
 response.setCharacterEncoding("UTF-8");

 try {

 XmlGenerator myXmlGenerator = new
 XmlGenerator(request.getParameter("input"));
 String xmlout = myXmlGenerator.getXmlResponse();
 response.getWriter().write(xmlout);
 response.getWriter().close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 context.responseComplete();
 }
 // Place non-AJAX decode code here…
}

ch11.indd 302ch11.indd 302 8/9/2006 11:58:35 AM8/9/2006 11:58:35 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 303

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

The first thing to notice about this decode() method is the code to check if a certain
“ajaxreq” (AJAX Request) is one of the request parameters:

if (null != request.getParameter("ajaxreq")) {

This check allows the decode() method to distinguish between AJAX requests
(XMLHttpRequest) and regular page requests. This approach requires that the JavaScript
function making this request must supply this parameter. Another very important request
parameter requirement is that the form name must also be passed as a parameter to the JSF
application. If this value if not passed, the JSF application will interpret the request as a
non-post-back request and the decode() method will not be entered. Therefore, the resulting
response will be a non-AJAX, complete HTML page. The form name value can be obtained
on the client by using window.document.forms[0].id.

NOTENOTE This actually just retrieves the ID of the first form in the page, but this is sufficient to allow
the JSF runtime to identify it as a non-post-back request.

Placing the formName along with the ajaxreq parameter can be combined with the
following JavaScript client code:

var formdata = "formName=" + window.document.forms[0].id + "&ajaxreq=true";

The formdata data is then passed in the XmlHttpRequest’s send() call with req
.send(formdata). Also, because submitting a form always issues a post-back, a different
URL (such as ajaxdirectoryservice) is not needed for the form’s action. Another important
bit of information that is often passed as a set of parameters is the current status of the
components in the page, or view state. This is only needed when the AJAX server component
needs access to the UI components of the original view to which the user is now posting
back. The next AJAX JSF example in the chapter does, however, show how to do this.

The other key thing to notice in the decode() method example is the usage of the
HttpServletResponse.getWriter() method to write the XML directly to the response. Another
approach would be to create a custom ResponseWriter that is suitable for writing XML.

The final thing to notice is that once the content for the request has been fulfilled, the JSF
lifecycle can complete the response immediately so as not to render an entire page by using
context.responseComplete().

The other task of the AJAX DirectorySearch JSF component is to render the same JavaScript
code that was hard-coded directly into the HTML page in the original AJAX-only version.
This is accomplished by using the ResponseWriter object in the component’s encode() method.
Since this portion is trivial, it is not included in the text but is available on the web site.

In addition to the rendering code, the only remaining sub-component is the JSP tag
handler that exposes the UI component to the JSP page. This is also a fairly straightforward
step and its code is also available on the web site.

Our next AJAX JSF component example builds on the concepts shown in the
DirectorySearch example but also shows alternative methods for rendering JavaScript
on the client as well as how to process AJAX requests.

An AJAX SpellCheck JSF Component
Similar to the previous AJAX example, this next example falls in line with the guiding
philosophy in our usage of AJAX, which is to present to the page author the simplest
possible usage model. It therefore also hides all of the complexity of asynchronous JavaScript

ch11.indd 303ch11.indd 303 8/9/2006 11:58:35 AM8/9/2006 11:58:35 AM

304 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

code behind a Faces component. Our next AJAX example component, SpellCheckTextArea,
extends HtmlInputTextArea and provides a simple AJAX-enabled spell-checking facility.
The JSP usage for this is also very simple:

<jcr:spellCheckTextArea cols="30" rows="15" value="#{user.interests}" />

This component renders a spell-checking panel beneath an HTML textarea input field,
and allows the user to check the spelling of their text before submitting. As before, the user
is not required to put any <script> tags anywhere in the page to use this component. When
the user presses the Next button (as shown in Figure 11-6), an asynchronous request is made
to the server, which causes a MethodBinding to be called. This MethodBinding points to
a method that takes a string and returns an array of suggested spellings. For the sake of
simplicity, <jcr:spellCheckTextArea> doesn’t do anything fancy to highlight the incorrect
word or dynamically replace it with the chosen suggestion. This feature has nothing to do with
Faces and therefore is left as an exercise for the reader. Rather, the UI simply shows the current
misspelled word and lists the suggestions in a simple table, as shown in Figure 11-6.

Similar to the DirectorySearch example, the SpellCheckTextArea example also shows
the power of combining Faces with AJAX techniques while delivering the same ease of
development to the page author. We’ll now examine the high-level AJAX JSF elements
of the SpellCheckTextArea example in more detail.

The AJAX Script Element for the SpellCheckTextArea Example
In contrast to rendering AJAX script directly into the page from the component’s encode()
methods, the SpellCheckTextArea example uses a PhaseListener to deliver the AJAX script
instead. In this example, the delivered script is just a reference to an external JavaScript file.
It is also conditionally rendered such that only the first usage of the SpellCheckTextArea

FIGURE 11-6 The AJAX SpellCheckTextArea component

ch11.indd 304ch11.indd 304 8/9/2006 11:58:36 AM8/9/2006 11:58:36 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 305

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

component renders the script since the browser only needs one copy of the AJAX script
in memory.

Using a PhaseListener to Deliver the AJAX Script to the Client Since the AJAX script is just a file
reference, in keeping with hiding the JavaScript from the page author, it would be nice to avoid
requiring the page author to place the script file at some location on the server’s filesystem.
Instead, the “file” will be referenced purely as a runtime resource such as “SpellCheckTextArea
.ajaxScript”. At runtime this script resource will be resolved and the content will be delivered to
the client leveraging the existing FacesServlet using a PhaseListener. This approach, shown in
Figure 11-7, allows you to bundle the actual AJAX script file into the same jar file in which the
component itself is packaged, preserving the all-important JSF value proposition of “drop the
component jar into WEB-INF/lib of your application and you’re ready to go.”

Early in this book, there is an example of how to write a simple PhaseListener. This
example defines a SpellCheckPhaseListener that handles several different processing tasks,
one of them being to render the AJAX script. The SpellCheckPhaseListener needs to be
notified only on the Restore View phase of the lifecycle, so its getPhaseId() method looks
like this:

public PhaseId getPhaseId() {
 PhaseId.RESTORE_VIEW;
}

FIGURE 11-7 Using a PhaseListener to render the AJAX JavaScript

ch11.indd 305ch11.indd 305 8/9/2006 11:58:36 AM8/9/2006 11:58:36 AM

306 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

In the case of rendering the AJAX script, the afterPhase() event is acted upon during the
Restore View phase:

public void afterPhase(PhaseEvent event) {
 // If this is restoreView phase and the viewId is the script view id…
 if (-1 != event.getFacesContext().getViewRoot().
 getViewId().indexOf(RENDER_SCRIPT_VIEW_ID)) {
 // render the script
 writeScript(event);
 event.getFacesContext().responseComplete();
 }
}

static final String RENDER_SCRIPT_VIEW_ID = "SpellCheckTextArea.ajaxScript";

private static final String SCRIPT_RESOURCE_NAME =
 "/com/jsfcompref/components/component/ajax.js";

private void writeScript(PhaseEvent event) {
 URL url = getClass().getResource(SCRIPT_RESOURCE_NAME);
 URLConnection conn = null;
 InputStream stream = null;
 BufferedReader bufReader = null;
 HttpServletResponse response = (HttpServletResponse)event.
 getFacesContext().getExternalContext().getResponse();
 OutputStreamWriter outWriter = null;
 String curLine = null;

 try {
 outWriter = new OutputStreamWriter(response.getOutputStream(),
 response.getCharacterEncoding());
 conn = url.openConnection();
 conn.setUseCaches(false);
 stream = conn.getInputStream();
 bufReader = new BufferedReader(new InputStreamReader(stream));
 response.setContentType("text/javascript");
 while (null != (curLine = bufReader.readLine())) {
 outWriter.write(curLine+"\n");
 }
 outWriter.close();

 } catch (Exception e) {
 String message = null;
 message = "Can't load script file:" +
 url.toExternalForm();
 response.sendError(HttpServletResponse.SC_BAD_REQUEST, message);
 }
}

The full code for the SpellcheckPhaseListener is included on the Web site for this
book; however, the writeScript() method deserves special attention. This method uses the
ClassLoader to load the ajax.js file and sends it out to the HttpServletResponse, making sure
to set the contentType to text/javascript and the status to 200. The call to responseComplete()
is needed because it tells the Faces lifecycle that the response for this request has been written

ch11.indd 306ch11.indd 306 8/9/2006 11:58:36 AM8/9/2006 11:58:36 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 307

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

and no further action need be taken to satisfy this request, thus causing the remaining lifecycle
phases to be skipped.

The Content of the SpellCheck AJAX Script and How It Uses XMLHttpRequest As described
above in the SpellCheckTextArea component example, all of the AJAX JavaScript code
resides in a file called ajax.js that is bundled into the ajaxcomponents.jar and served up
by the SpellCheckPhaseListener. The SpellCheckTextArea component also renders the
HTML markup, which with the provided script starts the process of sending XML requests
in response to the user clicking the buttons in the page. We’ll look at the component code
in detail later. For now, here is the rendered output of the component.

<p>
<textarea id="form:textarea" name="form:textarea"
 cols="30" rows="5">
</textarea>
<script type="text/JavaScript"
 src="SpellCheckTextArea.ajaxScript">
</script>

<table border="1">
 <tr>
 <td>current word</td>
 <td>suggestions</td>
 <td rowspan="2">
 <input type="button" value="previous" onclick=
"getSuggestionsForPreviousWord('form:textarea');">
 </td>
 <td rowspan="2">
 <input type="button" value="next" onclick=
"getSuggestionsForNextWord('form:textarea');">
 </td>
 <td rowspan="2">
 <input type="button" value="reset" onclick=
"resetSpellCheck('form:textarea');">
 </td>
 </tr>
 <tr>
 <td id="form:textarea:currentWord"> </td>
 <td id="form:textarea:suggestions"> </td>
 </tr>
</table>
</p>
<p><input type="submit" name="form:_id0"
 value="reload" onclick=
 "clearFormHiddenParams_form(this.form.id);" />
</p>

All of the JavaScript functions referenced as the value of onclick handlers are defined in
the ajax.js file. Let’s examine getSuggestionsForPreviousWord() to illustrate the necessary
actions to send an AJAX request to the server.

var theRequest = null;
var isMozilla = false;
var isIE = false;
var gContexts = new Array();

ch11.indd 307ch11.indd 307 8/9/2006 11:58:36 AM8/9/2006 11:58:36 AM

308 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

function getSuggestionsForPreviousWord(clientId) {
 var previousWord = getPreviousWord(clientId);

 var req = prepareRequest(clientId, previousWord);
 req.request.onreadystatechange = processAjaxResponse;
 req.request.send(req.params);

 return false;
}

First, some global variables are declared. These variables will be used throughout the
ajax.js file sent to the browser as requested in the tag:

<script type="text/JavaScript" src="SpellCheckTextArea.ajaxScript">

Next, note that getSuggestionsForPreviousWord() takes the clientId of the AJAX
component itself. This is very important because without this piece of data it would be
impossible to distinguish between multiple instances of the component in the same page.
In general, it is a good practice to always pass around the clientId of the component to all
the JavaScript functions relating to that component. The previous word (previousWord) is
obtained from the text area. Then the request (shown below) is prepared. The return value
from prepareRequest() is a JavaScript associative array with two entries. The req entry is a
two-element JavaScript object. req.request is the actual XMLHttpRequest JavaScript object.
req.params is the post data to be sent along with the request. The onreadystatechange
property in the example is assigned to the callback function, processAjaxResponse().

The content of getPreviousWord() and getContext() is shown next.

function getPreviousWord(clientId) {
 var context = getContext(clientId);
 if (-1 == context.index) {
 context.index = context.words.length - 1;
 }
 return context.words[context.index--];
}

function getContext(clientId) {
 var context = null;

 if (null == (context = gContexts[clientId])) {
 var fieldValue = window.document.getElementsByName(clientId);
 fieldValue = fieldValue[0].value;

 context = new Object();
 context.index = 0;
 context.words = fieldValue.split(' ');
 gContexts[clientId] = context;
 }
 return context;
}

The getPreviousWord() function calls getContext(), which returns another JavaScript
associative array that encapsulates the words to be spell checked along with the index of
the current word. getPreviousWord() simply manipulates the context appropriately.

ch11.indd 308ch11.indd 308 8/9/2006 11:58:36 AM8/9/2006 11:58:36 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 309

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Next, examine prepareRequest():

function prepareRequest(clientId, word) {
 // State submitting code omitted, described later
 var params = "";
 // A truly robust implementation would discern the form number in
 // which the element named by "clientId" exists, and use that as the
 // index into the forms[] array.
 var formName = window.document.forms[0].id;
 // build up the post data
 var ajaxId = clientId + "Ajax";
 var params = params + formName + "=" + formName + "&" + clientId + "=" +
 word + "&" + ajaxId + "=ajax";
 // Again, this is safe to use the 0th form's action because each
 // form in the page has the same action.
 var formAction = window.document.forms[0].action;
 var request = getXMLHttpRequest();

 request.open("POST", formAction, true);
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 var result = new Object();
 result.request = request;
 result.params = params;

 return result;
}

The prepareRequest() function takes as arguments the clientId of the AJAX component,
and the word to be spell checked. These arguments are assembled into name/value pair POST
data in the param local variable. Also included in the POST data are the view state (omitted
here, but explained later), the form name, the client ID, the word to be spell checked, and a
special parameter called ajaxId, which is expected by the AJAX component on the server to
indicate that this request is an AJAX request and not a normal form submit. Once the param
local variable is properly assembled, the action of the first form in the page is obtained. Note
that this will work even if there are multiple JSF forms in the page because the form action is
guaranteed by JSF to be the same for each one. As an enhancement from the DirectorySearch
example, helper method getXMLHttpRequest() is used to get the actual XMLHttpRequest
instance.

function getXMLHttpRequest() {
 if (!theRequest) {
 // If this is the mozilla browser
 if (window.XMLHttpRequest) {
 theRequest = new XMLHttpRequest();
 isMozilla = true;
 }
 else if (window.ActiveXObject) {
 theRequest = new ActiveXObject("Microsoft.XMLHTTP");
 isIE = true;
 }
 }
 return (theRequest);
}

ch11.indd 309ch11.indd 309 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

310 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Recall from before that the code to obtain an XMLHttpRequest object must detect the
browser family (Mozilla or Internet Explorer) to obtain the correct version. Also note that
there is only one actual XMLHttpRequest instance in this example. A production quality
implementation would need to manage multiple instances using a clientId keyed context
mechanism similar to what was done with the words in the text area.

Once the request object is attained, the open() function is called. Recall that this
method takes three arguments: the HTTP method to use for this request, the action to
which the request should be sent, and a Boolean parameter indicating if this request should
be sent asynchronously or not. As before, this example also posts back to the FacesServlet,
which always expects the method to be POST. The last argument to open() will be true
again since the “A” in AJAX stands for “asynchronous,” after all. After the request has been
open()ed, the Content-Type header is added to ensure the server properly interprets it. The
header is the same as before, “application/x-www-form-urlencoded”. Finally, a JavaScript
Object is constructed to hold the initialized XMLHttpRequest instance and the parameters
to be sent along with it. This Object is returned from the prepareRequest() method as used
in getSuggestionsForPreviousWord() above.

The last portion of the AJAX script is the callback function, processAjaxResponse(),
whose job is to process the returned XML response. For example, when a word such as
“ferther” is provided to the SpellCheckTextArea component, the XML response below
will be returned:

<message>
 <suggestions>
 <word>farther</word>
 <word>further</word>
 <word>feather</word>
 </suggestions>
 <currentWord>ferther</currentWord>
 <clientId>form:textarea</currentWord>
<message>

Let’s examine how the processAjaxResponse() method, shown here, takes this message
apart and deals with it.

function processAjaxResponse() {
 var request = getXMLHttpRequest();
 if (4 == request.readyState) {
 if (200 == request.status) {
 // extract the currentWord from the XML
 var currentWord =
 request.responseXML.getElementsByTagName("currentWord")[0];
 currentWord = currentWord.firstChild.nodeValue;
 // extract the suggested words from the XML
 var wordNodes =
 request.responseXML.getElementsByTagName("suggestions")[0];
 // if there are no suggested words, use an empty array
 if (null == wordNodes) {
 wordNodes = new Array();
 }
 else {
 wordNodes = wordNodes.childNodes;
 }
 // extract the clientId from the XML

ch11.indd 310ch11.indd 310 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 311

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

 var clientId =
 request.responseXML.getElementsByTagName("clientId")[0];
 clientId = clientId.firstChild.nodeValue;

 // update the currentWord JavaScript with the value from XML
 var targetElement =
 window.document.getElementById(clientId + ":currentWord");
 targetElement.innerHTML = currentWord;

 // update the suggested words with the value from XML
 targetElement =
 window.document.getElementById(clientId + ":suggestions");
 var wordList = "";
 for (i = 0; i < wordNodes.length; i++) {
 wordList = wordList + wordNodes[i].firstChild.nodeValue +
 "
";
 }
 targetElement.innerHTML = wordList;
 }
 }
}

Similar to the DirectorySearch example, the callback function first checks the request
.status value, which is the HTTP response code sent from the server. A value of 200 here
means that everything is okay, and we can read the response from the server. Again, the
XML message is accessed via the responseXML property of the XMLHttpRequest object.
The callback function also uses standard JavaScript DOM processing techniques here to
extract the important content from the message. Once we’ve parsed the message, we modify
the DOM of the page in the browser by getting access to the innerHTML property for the
currentWord and suggestions fields in the table. Recall from the rendered markup at the
beginning of this section that these fields look like this:

<tr>
 <td id="form:textarea:currentWord"> </td>
 <td id="form:textarea:suggestions"> </td>
</tr>

The suggestions field is populated with all the suggested words sent from the server.

The AJAX UI Component for the SpellCheckTextArea Example
Now that you have the ability to easily serve up the AJAX script in response to a request
to the FacesServlet, and you have an idea of what is in the AJAX script itself, you need to
generate the actual <script> element markup and the JavaScript attributes that cause the
AJAX requests to be sent based on user interaction. This is no different from rendering any
other HTML markup as you did earlier in the chapter. In the case of SpellCheckTextArea,
we add this logic to the encodeEnd() method:

public void encodeEnd(FacesContext context) throws IOException {
 getStandardTextareaRenderer(context).encodeEnd(context, this);
 ExternalContext extContext = context.getExternalContext();
 ResponseWriter writer = context.getResponseWriter();
 // Render the main script, only once per page
 if (!extContext.getRequestMap().containsKey("ajaxflag.ajaxScript")) {
 extContext.getRequestMap().put("ajaxflag.ajaxScript", Boolean.TRUE);
 writer.startElement("script", this);

ch11.indd 311ch11.indd 311 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

312 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

 writer.writeAttribute("type", "text/JavaScript", null);
 writer.writeAttribute("src", SpellcheckPhaseListener.RENDER_SCRIPT_VIEW_ID,
 null);
 writer.endElement("script");
 }

 // Table rendering code omitted
 writer.startElement("input", this);
 writer.writeAttribute("type", "button", "type");
 writer.writeAttribute("value", "previous", "type");
 writer.writeAttribute("onclick", "getSuggestionsForPreviousWord('" +
 clientId + "');", "onclick");
 writer.endElement("input");

 // More table rendering code omitted
 writer.startElement("input", this);
 writer.writeAttribute("type", "button", "type");
 writer.writeAttribute("value", "next", "type");
 writer.writeAttribute("onclick", "getSuggestionsForNextWord('" +
 clientId + "');", "onclick");
 writer.endElement("input");

 // More table rendering code omitted
 writer.startElement("input", this);
 writer.writeAttribute("type", "button", "type");
 writer.writeAttribute("value", "reset", "type");
 writer.writeAttribute("onclick", "resetSpellCheck('" +
 clientId + "');", "onclick");
 writer.endElement("input");

 // More table rendering code omitted
 writer.startElement("tr", this);
 writer.startElement("td", this);
 writer.writeAttribute("id", clientId + ":currentWord", "id");
 writer.write(" ");
 writer.endElement("td");
 writer.startElement("td", this);
 writer.writeAttribute("id", clientId + ":suggestions", "id");
 writer.write(" ");
 writer.endElement("td");
 writer.endElement("tr");

There are four points of interest in the above code. The first is the usage of a request
scoped attribute to prevent the <script> element from being rendered more than once per
page. This is desirable because once the script has been loaded into the browser, there is no
need to re-load it while the browser is on the same page. The second interesting point is the
usage of the RENDER_SCRIPT_VIEW_ID constant from the SpellcheckPhaseListener
class. This is a tight coupling between SpellCheckTextarea and SpellcheckPhaseListener.
The rendered script element looks like this:

<script type="text/JavaScript" src="SpellCheckTextArea.ajaxScript">
</script>

Because the URL from which the JSP page was loaded looks something like

http://localhost:8080/spellcheck/faces/spellCheck.jsp

ch11.indd 312ch11.indd 312 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 313

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

the relative URL in the <script> element causes the browser to fetch to the URL:

http://localhost:8080/spellcheck/faces/SpellCheckTextArea.ajaxScript.

This runs through the Faces lifecycle, and thus causes our SpellcheckPhaseListener to be
invoked, which in turn returns the AJAX script.

The third interesting point is the liberal sprinkling of clientId as a parameter to the
JavaScript function getSuggestionsForPreviousWord(). This is important because it
enables multiple instances of the component to reside in a single page, thanks to the ID
uniqueness guarantee provided by the JSF runtime.

Finally, note that we render empty <td> elements to hold the currentWord and
suggestions values from the server, again making sure to use the clientId to distinguish
between multiple instances of the spell-check component.

The AJAX Server Component for the SpellCheckTextArea Example
While the SpellCheckTextArea component generates the <script> tag that loads the AJAX
browser script, and the standard FacesServlet serves up the script to the browser using the
PhaseListener, the remaining portion of this example is the AJAX server component, which
responds to the AJAX request issued from the script in the browser. Let’s now review this in
more detail.

Similar to the DirectorySearch component where the AJAX server code is integrated into
the JSF application, the SpellCheckTextArea component example leverages the FacesServlet
to allow the JSF lifecycle to guide the processing of AJAX requests. As you’ve seen in the
DirectorySearch example, this is slightly more complex to develop than an independent generic
servlet solution, and there may be higher performance costs if the number of AJAX requests is
large. However, the entire AJAX technology is packaged into a single JSF UI Component, thus
ensuring easier access to application data (via EL, ManagedBeans, messages) as well as
providing a simpler deployment process. The performance cost can also be mitigated by
carefully designing your AJAX interactions, and by using a servlet container that can leverage
the high-performance java.nio package for its network layer, such as the Sun Java System
Application Server.

Using the FacesServlet and JSF Lifecycle to Host the High-Level AJAX Processing Server Element In
order for a request from the browser to get into the JSF component lifecycle, the second URL
argument of the open() call on the XMLHttpRequest instance must match the servlet-mapping
url-pattern defined in the web.xml (for example, /faces). There are two ways the JSF request
processing lifecycle can be used to orchestrate the AJAX request processing server component:
executing within the scope of a view (page) or executing without reference to a specific view.
The former involves having the AJAX browser script simulate a form submit with the entire
view state, which includes adding the necessary request parameters to allow the JSF lifecycle
to restore the entire view and perform processing on it. This approach has the benefit of
allowing your components to have access to the entire view while performing the AJAX
processing. The latter doesn’t ship the component state along with the AJAX request, and
therefore the JSF lifecycle cannot access the component state. However, it still can access
managed beans and other JSF resources. Let’s examine submitting the AJAX request with the
component state first, because omitting the component state is simple once you understand
how to include it in the first place.

Including the JSF Component View State in the AJAX Request In the ajax.js script, the
prepareRequest() function is responsible for marshaling the parameters to be sent in

ch11.indd 313ch11.indd 313 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

314 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

the AJAX request, including any view state. The omitted code to pull in the view state
is now included here.

function prepareRequest(clientId, word) {
 // The following is a dependency on Sun's JSF Implementation.
 // In Faces 1.2, this has been fixed by specifying a value of
 // javax.faces.ViewState as the name of the state field. A
 // production quality implementation would need to also consider
 // other implementations, such as MyFaces.

 var stateFieldName = "com.sun.faces.VIEW";
 var stateElements = window.document.getElementsByName(stateFieldName);
 var stateValue = null;
 var params = "";

 if (null != stateElements && 0 < stateElements.length) {
 // In the case of a page with multiple h:form tags, there will be
 // multiple instances of stateFieldName in the page. Even so, they
 // all have the same value, so it's safe to use the 0th value.
 stateValue = stateElements[0].value;
 // We must carefully encode the value of the state array to ensure
 // it is accurately transmitted to the server. The implementation
 // of encodeURI() in mozilla doesn't properly encode the plus
 // character as %2B so we have to do this as an extra step.
 var uriEncodedState = encodeURI(stateValue);
 var rexp = new RegExp("\\+", "g");
 var encodedState = uriEncodedState.replace(rexp, "\%2B");
 params = stateFieldName + "=" + encodedState + "&";
 }

The view state code above requires a bit of knowledge about the JSF state management
system, but essentially provides the server with the current state of the JSF page (or view
component tree). This is only needed when any manipulation of a view component tree is
to be done by the AJAX server component.

NOTENOTE The code provided is actually specific to Sun’s implementation of JSF 1.1 because the name of
the hidden field for the page state was not standardized until JSF 1.2.

Generally, the idea is to find the name of the hidden field that contains the page state, if
any, and bundle that into the parameters, making sure to encode it properly so the browser
doesn’t mix things up.

With this approach, the SpellCheckTextArea component itself can handle the AJAX
processing in its normal decode() method, as shown here:

public void decode(FacesContext context) {
 ExternalContext extContext = context.getExternalContext();
 String
 clientId = this.getClientId(context),
 ajaxId = clientId + "Ajax",
 ajaxIdVal = (String)
 extContext.getRequestParameterMap().get(ajaxId);
 String [] result = null;

ch11.indd 314ch11.indd 314 8/9/2006 11:58:37 AM8/9/2006 11:58:37 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 315

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

 // Determine if this is an ajax request or a regular Faces request.
 if (null == ajaxIdVal || -1 == ajaxIdVal.indexOf("ajax")) {
 // Delegate to standard Textarea Renderer if this is a regular
 // Faces request.
 getStandardTextareaRenderer(context).decode(context, this);
 return;
 }

 // See if there are any words to check
 String value = (String) extContext.getRequestParameterMap().get(clientId);
 if (null == value) {
 // If not, return.
 return;
 }

 try {
 result = (String [])
 getWordServer().invoke(context, new Object [] { value });
 } catch (Exception e) {
 System.out.println("Exception: " + e.getMessage());
 }
 if (null == result) {
 return;
 }

 HttpServletResponse response = (HttpServletResponse)
 context.getExternalContext().getResponse();

 // set the header information for the response
 response.setContentType("text/xml");
 response.setHeader("Cache-Control", "no-cache");

 try {
 ResponseWriter writer = Util.getResponseWriter(context);
 writer.startElement("message", this);
 writer.startElement("suggestions", null);
 for (int i = 0; i < result.length; i++) {
 writer.startElement("word", this);
 writer.writeText(result[i], null);
 writer.endElement("word");
 }
 writer.endElement("suggestions");
 writer.startElement("currentWord", this);
 writer.writeText(value, null);
 writer.endElement("currentWord");
 writer.startElement("clientId", this);
 writer.writeText(clientId, null);
 writer.endElement("clientId");
 writer.endElement("message");
 } catch (IOException e) {
 // log message…
 }
 context.responseComplete();

}

ch11.indd 315ch11.indd 315 8/9/2006 11:58:38 AM8/9/2006 11:58:38 AM

316 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Similar to the DirectorySearch component, the first thing decode() checks is the special
request parameter, which indicates that it is an AJAX request. In this example it is ajaxId.
The absence of this parameter causes the component to simply delegate to the standard
Textarea renderer for the decoding and to return afterward. It then extracts the clientId
parameter, which is assumed to be the list of words to check, and passes it on to the spell-
checking engine. If the server returned any suggestions, the XML message is composed to
conform to the syntax expected by the ajax.js script. Note that the content type is set to text/
xml and Cache-Control header is set to no-cache. These two headers are vitally important.
Leaving them out will break the component. Finally, note that responseComplete() is called
on the context for the same reason it was called on it in SpellcheckPhaseListener: to
prevent the rendering phase of the request processing lifecycle from happening. This is
important because the ajax.js script is expecting to receive only the simple XML message,
not a full rendered page.

JSF 1.2 TIPJSF 1.2 TIP The ability to maintain the component state and context when submitting and
processing the AJAX request is essential to using JSF and AJAX together. The previous sections
detailed the need for submitting the JSF View State along with the AJAX request. However, there is
a special case that must be addressed: iterating components. Consider a data-table with many rows
and columns. Let’s say we want to update a single cell in that table over AJAX, using, for example,
an “in-place editor” widget from a third-party JavaScript library. Recall that the data-table doesn’t
actually instantiate new components for each row in the table; rather, it uses a “rubber stamp”
approach for each row, substituting in the values for each row as the table is rendered.

<h:dataTable id="table" value="#{data.table}" var="row">
 <h:column>
 <h:outputText id="name" value=”#{row.userName}" />
 <h:column>
 <h:outputText id="userid" value="#{row.userid}" />
 </h:column>
</h:dataTable>

Regardless of how many rows are in the table, there are only two outputText components
created and used when the table is rendered. The rendered markup for this table will look
something like:

<table>
 <tr>
 <td><div id="table:0:name">John Bigboote</div></td>
 <td><div id="table:0:userid">bigboote</div></td>
 </tr>
 <tr>
 <td><div id="table:1:name">John Small Berries</div></td>
 <td><div id="table:1:userid">jsmallb</div></td>
 </tr>
</table>

Note the funny-looking id attributes of the table cells: table:1:name, etc. These clientId
values are created by the UIData component as the rows of the table are rendered.

Let’s say we want to replace each outputText component with a special AJAX-enabled
in-place editor component (the details of this component are beyond the scope of this introductory
chapter). Such components typically replace some static text with a text field and a button,
submitting the AJAX request when the button is pressed. The JSP markup will look something
like this:

ch11.indd 316ch11.indd 316 8/9/2006 11:58:38 AM8/9/2006 11:58:38 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 317

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

<h:dataTable value="#{data.table}" var="row">
 <h:column>
 <ajax:inplaceEditor value="#{row.userName}" />
 <h:column>
 <ajax:inplaceEditor value="#{row.userid}" />
 </h:column>
</h:dataTable>

In order for the AJAX request to modify the correct value of the user name based on which
cell in which row is edited, the clientId associated with that row must be properly interpreted.
Let’s say the user clicks on the String “John Smallberries” and clicks OK on the in-place editor
text field button. This will cause an AJAX request to be posted back to the FacesServlet
including a name/value pair like this:

table:1:userid="John Ya Ya"

When posting back this request, the JSF runtime must be able to locate the individual
component representing the userid element of the second row in the table. Passing the clientId to
findComponent() will not work because the table does not correctly position itself to the desired
row. JSF 1.2 introduces the invokeOnComponent() method for this purpose. This method is
over-ridden on the UIData class to properly position the table before taking action on the
component. The syntax for this method is

public boolean invokeOnComponent(FacesContext context, String clientId
 ContextCallback callback) throws FacesException

The ContextCallback is an interface that you must implement with the following signature:

public interface ContextCallback{
 public void invokeContextCallback(FacesContext context,
 UIComponent target);
}

The general usage pattern is to obtain the UIViewRoot from the FacesContext and call
invokeOnComponent() on it, like this:

UIViewRoot root = FacesContext.getViewRoot();
ContextCallback cb = new ContextCallback() {
 public void invokeContextCallback(FacesContext context,
 UIComponent target) {
 // Take some action on the component, perhaps setting its value.
 }
};
boolean found = root.invokeOnComponent(context, "table:1:userid", cb);
// found will be true if a matching component was found.

Omitting the JSF Component View State from the AJAX Request Leaving out the component
view state when issuing AJAX requests to the FacesServlet is also a viable option when the
server component does not need access to the page’s components at runtime. When this is
the case, the AJAX request doesn’t need to include the view state information as a request
parameter. Under this scenario the AJAX server component can be implemented as a
PhaseListener as opposed to using a decode() method in a component. This approach uses
basically the same AJAX server code that was used in the decode() method examples from
before, but instead it is placed inside of a PhaseListener. A complementary example of how
to do this is provided in the DirectorySearch example and is available on the Web site.

ch11.indd 317ch11.indd 317 8/9/2006 11:58:38 AM8/9/2006 11:58:38 AM

318 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

AJAX Tips and Tricks
Debugging a JSF AJAX application may make debugging a regular JSF application look
easy. One must directly confront browser incompatibilities. It is common for a component
to work fine in one browser but not function at all in another. The Web site http://www
.quirksmode.org/, named after one of the two modes in which a browser can read an
HTML document (the other being strict mode), is a great resource for getting around these
incompatibilities. Also, no survey of AJAX tips and tricks would be complete without a
reference to Ben Galbraith and Dion Almaer’s http://www.ajaxian.com/.

For completeness, we also must mention three leading JavaScript libraries that provide
advanced JavaScript features that are agnostic to the server side processing, and therefore
can be used with JSF.

• Dojo: http://dojotoolkit.org/ This open source library is a well-documented and
robust JavaScript library that includes AJAX processing, a packaging system, and a
set of ready-to-use UI Widgets that supplement the ones provided by JSF.

• Prototype: http://prototype.conio.net/ A competitor to Dojo, this is a smaller library,
also open source, with fewer features, but has a lot of buzz going around it due to
its association with Ruby on Rails.

• Zimbra: http://www.zimbra.com/ Zimbra is actually much more than just a JavaScript
library, and its other features are not generally germane to JSF; however, they do
have a decent AJAX library. Unfortunately, they are not open source as of this
writing but have announced plans to go that route.

There are also a number of debuggers and tools available to help in developing an
AJAXian application. The most basic is the JavaScript console.

The Mozilla Firefox Web browser has an excellent JavaScript debugger called Venkman
(http://www.mozilla.org/projects/venkman/). Another Firefox extension is called
Greasemonkey (http://greasemonkey.mozdev.org/). This enables you to add DHTML to
each page to highly customize its behavior in the browser, sometimes providing debugging
insight. Internet Explorer users can use the JavaScript debugging functionality in Visual
Studio and also make use of the Internet Explorer Developer Toolbar. This download can
be obtained by searching the Microsoft Web site for the exact name “Internet Explorer
Developer Toolbar” (without the quotes).

Finally, when considering deploying an AJAX application, one must consider accessibility
concerns. Chapter 14 covers accessibility in detail, but one point deserves special attention
here. One of the key guidelines for producing an accessible application is that it should
perform well even when JavaScript is turned off. This validity of this guideline is subject
to debate, but it is prudent to keep it in mind. As AJAX becomes more and more common,
meeting this guideline will become increasingly unreasonable. On the other hand,

ch11.indd 318ch11.indd 318 8/9/2006 11:58:38 AM8/9/2006 11:58:38 AM

PART II

 C h a p t e r 1 1 : B u i l d i n g A J A X J S F C o m p o n e n t s 319

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

government-mandated accessibility requirements are not likely to change just because it’s
possible to build cooler looking applications by ignoring these requirements. Please keep this
in mind when developing your AJAX-enabled application.

AJAX XMLHttpRequest Reference
This section provides a brief reference to the functionality of the XMLHttpRequest object.

Table 11-1 lists the methods available on the XMLHttpRequest object.
Table 11-2 lists the properties on the XMLHttpRequest object.

Method Description

abort() Cancels the currently in-progress request. Takes
no action if no request is in progress. Returns the
instance to the uninitialized state.

getAllResponseHeaders() Returns a string of all the response headers
received from the server. Each header is in the
form Name: Value\r\n where \r\n is a carriage
return, followed by a line-feed. The return from
this method is only valid after a successful call
to send().

getResponseHeader(“HeaderName”) Like getAllResponseHeaders() but only returns the
named header.

open(“HTTP Method”, “URL”[,
asyncBoolean, username, password])

Starts the request process but doesn’t send the
request. HTTP method is generally either GET or
POST.
URL is the absolute or relative URL to which the
request should be sent.
If asyncBoolean is true the request is performed
asynchronously. Otherwise, it is performed
synchronously.
If basic authentication is required, the username
and password may be provided as well.

send(“params”) Once the open() call has been made, the request
is sent with this method. The argument is either
the POST data to send or DOM object data.

setRequestHeader(“label”, “value”) Sets an HTTP request header on the not-yet-sent
request. This is typically used to set the Content-
Type to application/x-www-form-urlencoded.

TABLE 11-1 XMLHttpRequest Methods

ch11.indd 319ch11.indd 319 8/9/2006 11:58:38 AM8/9/2006 11:58:38 AM

320 P a r t I I : E x t e n d i n g J a v a S e r v e r F a c e s

CompRef8 / JavaServer Faces: The Complete Reference / Schalk & Burns / 240-0

Property Description

onreadystatechange Points to a JavaScript function that will be called after each
state change

readyState The current state for this instance. This value is changed
by the server to indicate the progression of the request
through its lifecycle. Every state change will cause the
onreadystatechange method to be called. Valid values are
0 ==>UNINITIALIZED
1 ==>LOADING
2 ==>LOADED (send has been called, but status and headers
are not yet available)
3 ==>INTERACTIVE (Some more data is available but not yet
ready to read. This state is not well defi ned)
4 ==>COMPLETED (All data is available in either responseText
or responseXML properties)

responseText Simple string version of the response

responseXML XML DOM version of the response

status HTTP response code

statusText The text accompanying the status code. For example, if the
status is 404, the statusText will likely be “Not Found”

TABLE 11-2 Properties of the XMLHttpRequest Object

ch11.indd 320ch11.indd 320 8/9/2006 11:58:39 AM8/9/2006 11:58:39 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

