
{10}Chapter

JAX-RPC

Java API for XML-based RPC (JAX-RPC) is intended to be a Java API to expose
remote procedure calls that use XML to business applications that occur primar-
ily, though not exclusively, on the periphery of organizations. The need for such
synchronous API increases as corporations begin to communicate with other
business partners using disparate hardware and software systems.

Remote procedure call (RPC) has been around for a while, with many imple-
mentations. It essentially enables clients to work with remote procedures, or rou-
tines, that reside on different machines just as if the procedures were executed lo-
cally. In its simplest form, a client calls a procedure, with the name of the
procedure and the arguments; the server does something useful and sends the re-
sults back to the client.

Allowing different machines or processes in different address spaces to com-
municate with each other isn’t really a new concept. The Java RMI and CORBA
models are good examples of RPC that allows objects to marshal arguments, in-
voke a procedure or method on an object residing on a different machine,
unmarshal the results, and use them.

An almost infinite number of data formats is possible for the arguments and
results. As more and more Java applications expose themselves to interoperate
and move toward a Web-service-based paradigm, XML is the new choice for this
data format. JAX-RPC facilitates the invocation of remote procedures, using
XML as the data format and SOAP as the data protocol.

SOAP defines the XML-based protocol for exchange of information in a dis-
tributed environment, specifying the envelope structure, encoding rules, and a
convention for representing remote procedure calls and responses. JAX-RPC pro-
vides a Java API for developers to invoke remote procedure calls, by abstracting
and hiding the low-level SOAP semantics associated with RPC from appli-
cations. >

313

In this chapter, runtime refers to a JAX-RPC–compliant implementation,
such as the reference implementation packed with Java WSDP.

>

> JAX-RPC Service Model

As Figure 10.1 shows, the service model for JAX-RPC is similar to other RPC
models, such as RMI-IIOP and CORBA. The model has several components.

The layers shown in Figure 10.1 correspond to the Open System Interconnec-
tion (OSI) networking model, which has these characteristics:

• The physical layer conveys the bitstream through the network.

• The data link layer encodes and decodes data packets into bits.

• The network layer provides switching, routing, packet sequencing, address-
ing, and forwarding between virtual circuits, to transmit data from node to
node.

• The transport layer provides transparent transfer of data between hosts and is
responsible for end-to-end error recovery and flow control. Clearly, the
HTTP binding for SOAP lacks some of this, whereas other bindings, such as
POP-SMTP, IMAP, and JMS do not.

314 Chapter 10 JAX-RPC

Tie

JAXRPC Client
Service

Implementation
Application Layer

(end-user processes)

Session and
Presentation Layer

Transport Layer

Network Layer

DataLink Layer

Endpoint

SOAP

HTTP

TCP/IP

Hardware
interface

Stub Dll
Dynamic

Proxy

SOAP

HTTP

TCP/IP

Hardware
interface

JAXRPC
runtime

Physical Layer

Figure 10.1
The JAX-RPC

model

• The session layer establishes, coordinates, and terminates connections, ex-
changes, and dialogs between the applications.

• The presentation layer, also known as the syntax layer, provides indepen-
dence from differences in data representation by translating from application
to network format, and vice versa. The presentation layer works to transform
data into the form the application layer can accept.

• The application layer is the actual application and end-user processes, where
business functionality is addressed.

Although JAX-RPC relies on complex protocols, the API hides this complex-
ity from the application developer. On the server side, the developer specifies the
remotely accessible procedures by defining methods in a Java service definition
interface and writing one or more Java classes that implement those methods.
JAX-RPC exposes these objects as a service endpoint and generates the relevant
ties. The client never directly communicates with the service implementation. The
client uses a stub or other mechanisms to communicate with the endpoint (cov-
ered later in this chapter), and the endpoint uses the tie. The client then invokes
the service, passing in relevant parameters, and the service returns the results to
the client.

Before we dive into the internals of this model, we will take a look at the data
types and see how the marshalling and unmarshalling occurs. We will then see
how to use that in developing JAX-RPC services.

> Data Types and Serialization

Let us revisit some object-oriented concepts. An object at any time has state. This
state, represented by its member variables at that time, is the object’s snapshot.
The definition of the object is the class file or compiled representation. An object
with no member variables—that is, no state—is essentially just a utility that does
something useful every time its methods are invoked. It may create other objects
and change their states, but the scope of such secondary objects is limited to the
method.

To do a remote procedure call, something representing state must be sent over
the wire, and something representing state must be returned. Sending objects
over the network is not trivial, since the network is not aware of objects; it sup-
ports only bit transmission.

The mechanism used to change the objects into a format that can be transmit-
ted over the network is called marshalling, and reconstructing the objects from

Data Types and Serialization 315

this format is called unmarshalling. Marshalling over the wire requires object state
to be extracted and sent in a well-defined format. Unmarshalling requires that
the format be known, for reconstruction to take place. To marshal and unmarshal
successfully, both sides in the exchange must use the same protocol to encode and
decode object structure and data. For example, RMI Java uses Java serialization to
marshal and unmarshal objects over Java Remote Method Protocol (JRMP).
CORBA uses IIOP, DCOM uses ORPC, and Gemstone uses SRP.

In summary, four things are required between communication parties in dif-
ferent address spaces:

1. An agreement on the data format

2. An agreement on the mechanism for transforming and reconstructing object
state into this format

3. An agreement on the protocol for communication between objects

4. An agreement on the transport protocol

XML helps in achieving item 1, XML schemas and SOAP with 2 and 3, and
HTTP (and others in the IP family of protocols) with 4. >

So how is this relevant to JAX-RPC? JAX-RPC defines

• The data type mapping of Java-XML and XML-Java for making the remote
service invocation possible

• Java-WSDL and WSDL-Java for making the service description possible

This is significant, because JAX-RPC provides a standard for vendors to im-
plement and makes developer code vendor-neutral, much the way any of the
other Java specifications do. Just as developers write a J2EE application and ex-
pect it to behave the same across J2EE-compliant application servers from multi-
ple vendors, JAX-RPC applications will behave the same across JAX-RPC
runtimes.

This does not mean that a JAX-RPC client can call only a JAX-RPC service
and a JAX-RPC service can be used only by a JAX-RPC client. An application

316 Chapter 10 JAX-RPC

Java (platform-independent language) + XML (platform-independent data
format) + SOAP (platform-independent object communication protocol) +
IP family of protocols (platform/network-independent transport) = core of
what is driving Web services and their adoption today

>

could still use a JAX-RPC client to invoke a .NET service and a .NET client to
invoke a JAX-RPC service, as we will demonstrate later. As Figure 10.2 shows, be-
cause the data format, object communication protocol, and transport protocol
are platform- and vendor-implementation independent, the application can be
accessed by any client on any platform, as long as it uses these standards. The data
type mapping and serialization rules defined by JAX-RPC are useful when the
JAX-RPC runtime is being used on the Java platform at the client or server end. >

From an RPC perspective, if the client and service are written in Java, the
runtime needs to know the following information:

Data Types and Serialization 317

RPC implementations using SOAP from different vendors:

• Apache SOAP 2.2

• Apache Axis (Alpha-1)

• HP Web Services Platform

• IBM Web Services Toolkit, WSIF

• IONA XML Bus 1.2

• Microsoft SOAP Toolkit 2.0

• Microsoft .NET

• Others: PocketSOAP, SOAP::Lite, Systinet WASP, SOAP-RMI, GLUE, Cape
Clear

>

C# , VB.NET J#
Microsoft.NET

JAX-RPC
J2EE

Microsoft.NET,
Perl, Any

Implementation

SOAP:Light
Perl

Other
Implementation

Any

Java-XML
XML-Java

Java-XML
XML-Java

SOAP

SOAP

SOAP

SOAP

SOAP

JAX-RPC
J2EE

Figure 10.2
JAX-RPC client-

server inter-
action

1. The endpoint of the service—that is, where to invoke the service

2. The method name and signature—that is, what to invoke

3. How to marshal Java data types and objects into an XML format that can be
transmitted over the wire to invoke the method

4. How to unmarshal the incoming XML into Java data types and objects to
process the results of that operation, if any

Java-to-XML Marshalling

While JAX-RPC does not define the actual marshalling mechanism, it does de-
fine the input and output types that result from that marshalling. Vendors write
the marshalling code as part of their implementations.

In JAX-RPC, marshalling is different from the standard Java serialization
mechanism, where all nontransient fields in the class are automatically serialized.
JAX-RPC defines a standard set of Java types as method arguments and return
types, meaning that a JAX-RPC—compliant system will provide the ready-to-use
serializers and deserializers for these types:

1. All Java primitives, with the exception of a char (int, float, long, short,
double, byte, Boolean). A char is treated as a String, since XML schemas
have no char type primitive (see Appendix A).

2. An object that is an instance of

• java.lang.String

• java.util.Date

• java.util.Calendar

• java.math.BigInteger

• java.math.BigDecimal

3. An object that is an instance of a class that conforms to the following restric-
tions:

• It should conform to the JavaBean specification, so that its variables can
be easily accessed.

• It should not be a Remote object (i.e., should not implement java.rmi.Re-
mote).

• It should have a default no arguments constructor.

These are important, because any other class is passed between the client and
the server. For example, if a java.util.Map of com.flutebank.Account objects

318 Chapter 10 JAX-RPC

must be passed from the client to the server, a pluggable serializer and
deserializer pair must be written. This is explored later in this chapter.

4. An array (with the caveat that it must contain bytes or a supported type)

5. A java.lang.Exception class >

The above rules differ from the standard Java serialization requirements.
Table 10.1 lists the details for the same class to be used across an RMI/RMI-IIOP
application as well as a JAX-RPC application. This is relevant where an existing
EJB, RMI, or RMI-IIOP object must expose itself directly as a JAX-RPC service
and the code must be reused across these interfaces.

Once the parameter types have been defined, rules and a standard mecha-
nism to map these data types from Java to XML must also be defined. JAX-RPC
does this, as Table 10.2 shows. >>

XML-to-Java Unmarshalling

To invoke a procedure on an object with incoming XML data, an implementa-
tion must map XML data types into Java data types. This is identical to Table
10.2, with some differences explained in Tables 10.3a and 3b. XML type is de-
clared as nillable in the schema, then it maps to its corresponding Java wrapper
(primitives in Java cannot be null).

SOAP Bindings and Encoding

In Chapter 4, we looked at SOAP encoding in detail. Encoding refers to how data
is serialized and sent over the wire. The parties exchanging messages have to agree
on one rule to ensure that both correctly interpret the message sent from the

Data Types and Serialization 319

JAX-RPC does not support a pass by reference mode for parameters and
does not support passing of remote objects, because both the SOAP 1.1
and SOAP 1.2 treat objects by reference as out of scope. JAX-RPC mandates
support for pass by copy semantics for parameters and return values, simi-
lar to the way nonremote objects are passed in RMI.

JSR–31 defines the XML Data Binding Specification with JAXB, for convert-
ing an XML schema into Java classes. In the future, JAX-RPC will include the
data type mapping defined by JAXB.

>

>>

other side. They can either agree beforehand, using a predefined encoding scheme,
or use an XML schema directly in the data to define the data types. The message
with the former notation is said to be an encoded message; the latter is said to be a
literal message.

SOAP encoding refers to the rules defined by the SOAP specification that the
parties can follow to interpret the contents of the Body element. SOAP defines an
encoding scheme, also referred to as Section 5 encoding (since it is specified
in section 5 of the SOAP specifications). It outlines a schema (http://schemas
.xmlsoap.org/soap/encoding/) containing certain basic data types that participants
in the conversation can use to describe the elements in the body of the SOAP
message. This encoding is not mandatory, and there is no default.

In Chapter 4, we also looked at the use of the encodingStyle attribute and the
use of simple and compound types. To recall, the encodingStyle attribute in the
SOAP message can be used to indicate the encoding in use. For example, the
message below indicates that SOAP encodings are in use:

320 Chapter 10 JAX-RPC

Table 10.1 Portability across JAX-RPC and RMI

JAX-RPC Java serialization A portable value object

Should not extend Remote. Can extend Remote. It is
treated as an remote object
and passed by reference.

Should not implement Remote.

Serializable not required. Serializable required. Should implement
Serializable.

transient fields are not
serialized.

transient fields are not
serialized.

transient fields are not
serialized.

static fields are serialized. static fields are not
serialized.

Should not contain static
fields.

All public variables are
serialized.

public transient variables
are not serialized.

Should not contain any public
transient variables.

Only private, protected,
package-level fields that
have get/set methods are
serialized.

Get/set methods are not
required. Private, protected,
package-level fields are still
serialized.

Should have get/set methods
for all private, protected,
package-level fields.

Bean properties are
serialized.

Bean properties are
serialized.

Can have bean properties with
get/set methods.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:enc="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://www.flutebank.com/xml"
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<env:Body>
<ns0:getLastPayment>

<vendor xsi:type="enc:string">my cable tv provider</vendor>
</ns0:getLastPayment>
</env:Body>
</env:Envelope>

Data Types and Serialization 321

Table 10.2 Java-to-XML Data Type Mapping

Java type XML type

Boolean xsd:boolean

Byte xsd:byte

Short xsd:short

Int xsd:int

Long xsd:long

Float xsd:float

Double xsd:double

byte[] xsd:base64Binary

Byte[] xsd:base64Binary

java.lang.String xsd:string

java.math.BigInteger xsd:integer

java.math.BigDecimal xsd:decimal

java.util.Calendar xsd:dateTime

java.util.Date xsd:dateTime

javax.xml.namespace.Qname xsd:QName

JavaBean class whose properties are any supported
Java data type or another valid JavaBean

XML schema sequence
of elements

Array of any of above SOAP array

The message shows that the vendor element is of type enc:string defined in
the encoding schema, represented by the encodingStyle attribute. The receiver
of this message, processing the vendor element, knows it is a SOAP-encoded
string, which it can then translate into the language in which the service is imple-
mented.

The SOAP specification does not define any language bindings for the data
types described by its encoding schema. Instead, the types are generic enough to
model some of the typical data types found in Java and most other programming
languages. JAX-RPC defines how the simple types in the SOAP encoding are
mapped to Java, as per Table 10.4.

Note that the data types in Table 10.4 are the same as the nillable types in Ta-
ble 10.3a, because they map to the same underlying basic XML schema types. Of
particular interest is the Array type, which maps to Java arrays. In the previous

322 Chapter 10 JAX-RPC

Table 10.3a XML-to-Java Data Type Mapping for Basic Types

XML type Java type When declared as nillable

xsd:boolean Boolean java.lang.Boolean

xsd:byte Byte java.lang.Byte

xsd:short Short java.lang.Short

xsd:int Int java.lang.Integer

xsd:long Long java.lang.Long

xsd:float Float java.lang.Float

xsd:double double java.lang.Double

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:dateTime java.util.Calendar

xsd:Qname javax.xml.namespace.Qname

Data Types and Serialization 323

Table 10.3b XML-to-Java Data Type Mapping

XML construct Java construct

ComplexType JavaBeans class with the same name.

Its properties are mapped from the element’s name and
type.

Complex types derived by extension are mapped into
classes with similar hierarchies.

Example

<complexType name=“PaymentConfirmation”>
<sequence>

<element name=“confirmationNum” type=“int”/>
<element name=“payee” type=“string”/>
<element name=“amt” type=“double”/>

</sequence>
</complexType>

public class PaymentConfirmation {
private int confirmationNum;
private String payee;
private double amt;
public PaymentConfirmation() {
}

public PaymentConfirmation(int confirmationNum,
java.lang.String payee, double amt) {

this.confirmationNum = confirmationNum;
this.payee = payee;
this.amt = amt;

}

// getXXX/setXXX methods for each member property
}

(continued)

324 Chapter 10 JAX-RPC

Table 10.3b XML-to-Java Data Type Mapping (Cont’d)

XML construct Java construct

Enumerations A Java class with the same name as the enumeration. The
class must contain

1. The enumerated values as members of the enumeration
type

2. A getValue method that returns the current value

3. Two static methods for each label

Example

<simpleType name=“PaymentDetail” >
<restriction base=“xsd:string” >

<enumeration value=“checking” />
<enumeration value=“saving” />
<enumeration value=“brokerage” />

</restriction>
</simpleType>

public class PaymentDetail implements Serializable {
private String value;
public static final String _checkingString = “checking”;
public static final String _savingString = “saving”;
public static final String _brokerageString = “brokerage”;

public static final String _checking = new String
(_checkingString);

public static final String _saving = new String(_savingString);
public static final String _brokerage = new String

(_brokerageString);

public static final PaymentDetail checking =
new PaymentDetail(_checking);

public static final PaymentDetail saving = new PaymentDetail
(_saving);

public static final PaymentDetail brokerage =
new PaymentDetail(_brokerage);

Data Types and Serialization 325

Table 10.3b XML-to-Java Data Type Mapping (Cont’d)

protected PaymentDetail(String value) {
this.value = value;

}

public String getValue() {
return value;

}

public static PaymentDetail fromValue(String value)
throws IllegalStateException {
if (checking.value.equals(value)) {

return checking;
} else if (saving.value.equals(value)) {

return saving;
} else if (brokerage.value.equals(value)) {

return brokerage;
}
throw new IllegalArgumentException();

}

public static PaymentDetail fromString(String value)
throws IllegalStateException {
if (value.equals(_checkingString)) {

return checking;
} else if (value.equals(_savingString)) {

return saving;
} else if (value.equals(_brokerageString)) {

return brokerage;
}
throw new IllegalArgumentException();
}

}
// other methods not shown
}

extract, if the SOAP body contained something like the following, it would be
mapped to an array of String[] objects in the Java side by JAX-RPC, and vice
versa:

<ns0:getLastPayment>
<vendor enc:arrayType="xsd:string[4]" xsi:type="enc:Array">

<item xsi:type="xsd:string">AT&T</item>
<item xsi:type="xsd:string">Sprint PCS</item>
<item xsi:type="xsd:string">Flute Electric Co</item>

</vendor>
</ns0:getLastPayment>

While mapping arrays, the type of the array is determined from the schema
type. The size is determined at runtime rather than at declaration time. JAX-RPC
also supports multidimensional arrays, where the types are supported JAX-RPC
types. Listing 10.1 shows how a multidimensional array of application-defined
PaymentDetail objects may be mapped on the wire using SOAP encoding:

Listing 10.1 A multidimensional array of application-defined PaymentDetail objects mapped on the

wire using SOAP encoding

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

326 Chapter 10 JAX-RPC

Table 10.4 Mapping of SOAP Simple Types to Java

SOAP-encoded simple type Java type

String java.lang.String

Boolean java.lang.Boolean

Float java.lang.Float

Double java.lang.Double

Decimal java.math.BigDecimal

Int java.lang.Integer

Short java.lang.Short

Byte java.lang.Byte

Base64 byte[]

Array Java array

xmlns:ns0="http://www.flutebank.com/xml"
// other namespaces >
<env:Body>
// other XML
<ns0:ArrayOfArrayOfPaymentDetail id="ID1" xsi:type="enc:Array"
enc:arrayType="ns0:PaymentDetail[2,2]">

<item href="#ID2"/>
<item href="#ID3"/>
<item href="#ID4"/>
<item href="#ID5"/>

</ns0:ArrayOfArrayOfPaymentDetail>
<ns0:PaymentDetail id="ID2" xsi:type="ns0:PaymentDetail">

<date xsi:type="xsd:dateTime">2002-08-26T21:17:37.678Z</date>
<account xsi:type="xsd:string">Credit</account>
<payeeName xsi:type="xsd:string">Digital Credit Union</payeeName>
<amt xsi:type="xsd:double">2000.0</amt>

</ns0:PaymentDetail>

<ns0:PaymentDetail id="ID3" xsi:type="ns0:PaymentDetail">
<date xsi:type="xsd:dateTime">2002-08-26T21:17:37.678Z</date>
<account xsi:type="xsd:string">Credit</account>
<payeeName xsi:type="xsd:string">Auto Loan Company</payeeName>
<amt xsi:type="xsd:double">299.0</amt>

</ns0:PaymentDetail>

<ns0:PaymentDetail id="ID4" xsi:type="ns0:PaymentDetail">
<date xsi:type="xsd:dateTime">2002-08-26T21:17:37.678Z</date>
<account xsi:type="xsd:string">Credit</account>
<payeeName xsi:type="xsd:string">AT&T Wireless</payeeName>
<amt xsi:type="xsd:double">20.0</amt>

</ns0:PaymentDetail>

<ns0:PaymentDetail id="ID5" xsi:type="ns0:PaymentDetail">
<date xsi:type="xsd:dateTime">2002-08-26T21:17:37.678Z</date>
<account xsi:type="xsd:string">Credit</account>
<payeeName xsi:type="xsd:string">AT&T Long distance</payeeName>
<amt xsi:type="xsd:double">12.0</amt>

</ns0:PaymentDetail>
</env:Body>
</env:Envelope>

Data Types and Serialization 327

In Chapter 4, we introduced the concept of RPC/document style. Recall that
a SOAP message on the wire can be represented in either in RPC style or docu-
ment style, which affects the body of the message. In RPC style, the client invokes
a method on the server, by sending in the body of the SOAP message all information
necessary for that method’s execution. It receives a response in the same fashion.
All SOAP messages shown till now in this chapter have been in RPC style.

In document style, the client and server communicate using XML docu-
ments. The client sends an XML document such as a purchase order; the server
does something with it and returns an XML document such as an invoice as a
result (Figure 10.3).

Thus, based on the style (RPC or document) and use (encoded or literal), four
combinations result:

• RPC/encoded

• RPC/literal

• Document/encoded

• Document/literal

In Chapter 5, we looked at how WSDL could represent these combinations
using the style and use attributes of the binding element. Let us elaborate on
that with a detailed example. The WSDL extract below shows a sample schema
and message extracts. The schema has two elements, Amount and details, and a
custom type, PaymentDetail. The message element shown has four parts: part1,
which is of type PaymentDetail; part2, which is of type int; part3, which is a sim-

328 Chapter 10 JAX-RPC

Envelope

Header

RPC Call

Body

Attachments

Service
Client

Service

SOAP

(a) (b)

Figure 10.3
(a) RPC style.

(b) Document
style.

Envelope

Header

Doc payload

Body

Attachments

Service
Client

Service

SOAP

ple element Amount; and part4, which is an element of complex type Payment-
Detail. Table 10.5 compares the combinations. >

<definitions
targetNamespace="(namespace for service WSDL)"
xml:typens="(namespace for service schema)">

<types>
<schema targetNamespace="(namespace for the schema)">

<element name="Amount" type="xsd:int"/>
<element name="details" type="typens:PaymentDetail"/>

<!--user defined data type-->
<complexType name="PaymentDetail">

<sequence>
<element name="balance" type="xsd:int"/>
<element name="payeeName" type="xsd:string"/>

</sequence>
</complexType>

</schema>
</types>

<message...>
<part name='part1' type="typens: PaymentDetail"/>
<part name='part2' type="xsd:int"/>
<part name='part3' element="typens:Amount"/>
<part name='part4' element="typens:details"/>

</message>
...
</definitions>

Data Types and Serialization 329

In document/literal style, the contents between <SOAP-ENC:Body> and
</SOAP-ENC:Body> are sent as an XML string to the application, which is re-
sponsible for parsing the XML.

JAX-RPC requires RPC/encoded and document/literal support. These are
optional for the other two combinations.

For more about the style use combinations of RPC/literal, document/literal,
PRC/encoded, and document/encoded, see Chapter 5.

>

330 Chapter 10 JAX-RPC

Table 10.5 Examples of RPC/Encoded, RPC/Literal, Document/Literal, and Document/
Encoded Combinations

Style

RPC/encoded

WSDL

<operation name=“schedulePayment” style=“rpc” ... >
<input>
<soap:body parts=“part1 part2”

use=“encoded”
encoding= “http://schemas.xmlsoap.org/soap/encoding/”

namespace=“(namespace for message)”/>
</input>
</operation>

The WSDL extract shows an RPC operation named schedulePayment being
invoked in RPC/encoded format, with SOAP encodings and two input
parameters.

SOAP message

<soapenv:body xmlns:mns=“(namespace for message)”>
<mns:schedulePayment>

<part1 HREF=“#1” TARGET=“_self”/>
<part2>5688</part2>

</mns:schedulePayment>

<mns:PaymentDetails id=“#1”>
<balance>8933</balance>
<payeeName>johnmalkovich</payeeName>

</mns:PaymentDetails>
</soapenv:body>

Style

RPC/literal

<operation name=“schedulePayment”
style=“rpc” ... >

<input>
<soap:body use=“literal”

parts=“part1 part2 part3 part4”

Data Types and Serialization 331

Table 10.5 Examples of RPC/Encoded, RPC/Literal, Document/Literal, and Document/
Encoded Combinations (Cont’d)

namespace=“(namespace for message)”/>
</input>

// ...
</operation>

The WSDL extract shows an RPC operation named schedulePayment being
invoked in RPC/literal format, with four input parameters. It shows how data
types can be passed and how a schema element is sent across the wire di-
rectly, without any encoding.

SOAP message

<soapenv:body xmlns:mns=“(namespace for message)”
xmlns:typens=“(namespace for service schema)”.. >

<mns:schedulePayment>

<mns:part1>

<typens:balance>8933</typens:balance>
<typens:payeeName>johnmalkovich

</typens:payeeName>
</mns:part1>

<mns:part2>5688</mns:part2>

<mns:part3>

<typens:Amount>5688</typens:Amount>
</mns:part3>

<mns:part4>
<typens:PaymentDetail>
<typens:balance>8933</typens:balance>
<typens:payeeName>johnmalkovich

</typens:payeeName>
</typens:PaymentDetail>
</mns:part4>

</mns:schedulePayment>
</soapenv:body>

(Continued)

332 Chapter 10 JAX-RPC

Table 10.5 Examples of RPC/Encoded, RPC/Literal, Document/Literal, and Document/
Encoded Combinations (Cont’d)

Style

Document/literal

<operation name=“schedulePayment”
style=“document” ... >

<input>
<soap:body parts=“part1 part3 part4”

use=“literal”>
</input>
</operation>

The WSDL extract shows a document-style message being sent in literal
format with four input parameters. It shows how data types can be passed
and how a schema element is sent across the wire directly, without any
encoding.

SOAP message

<soapenv:body
xmlns:typens=“(namespace for service schema)” ... >

<typens:balance>8933</typens:balance>
<typens:payeeName>johnmalkovich

</typens:payeeName>

<typens:Amount>5688</typens:Amount>

<typens:details>
<typens:balance>5688</typens:balance>
<typens:payeeName>johnmalkovich

</typens:payeeName>
</typens:details>
</soapenv:body>

When to Use RPC/Encoded and Document/Literal

To best choose a particular style, an architect would need to understand the im-
plementation or desired use. In general, however, the effort and complexity in-
volved in document style service is greater than for RPC style—for example,
in negotiating the schema design with the business partners and validating the

Data Types and Serialization 333

Table 10.5 Examples of RPC/Encoded, RPC/Literal, Document/Literal, and Document/
Encoded Combinations (Cont’d)

Style

Document/encoded

<operation name=“schedulePayment”
style=“document” ... >

<input>
<soap:body parts=“part1 part2”

use=“encoded”
encoding=

“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“(namespace for message)”/>

</input>
</operation>

The WSDL extract shows a document style message being sent with SOAP
encoding and four input parameters. It shows how data types can be passed
and how a schema element is sent across the wire directly.

SOAP message

<soapenv:body ...
xmlns:mns=“(namespace for message)”>

<mns:PaymentDetails>
<balance>8933</balance>
<payeeName>johnmalkovich</payeeName>

</mns:PaymentDetails>

<soapenc:int>5688</soapenc:int>
</soapenv:body>

document against the schema. When architecting applications, these are some of
the decision points for deciding between RPC or document style:

1. State maintenance. If multiple service invocations are involved in a single
business transaction, with state maintained between the service invocations,
the service must maintain state. Maintaining state is nontrivial and is usually
not as simple as exposing a stateful EJB as a Web service over multiple RPC
invocations. One alternative is to use document style, pass the contents of an
entire transaction in the document, and allow the service implementation to
ensure the sequence and state maintenance in the transaction. Information
about that state can be returned in a token or in the resulting document to the
client if needed.

If the service consumer is only requesting information or persisting informa-
tion in a specific format (e.g., industry-standard XML schema), a document
style message makes more sense, because it is not constrained by the RPC-ori-
ented encoding.

2. Integration with external parties and decoupled interfaces. Service con-
sumers outside the enterprise typically have little control over the use and
consequences of changes to the service interface. RPC interfaces are expected
not to change, because any change would break the contract between the ser-
vice and its consumers. In scenarios where a large number of applications
have produced stub code from the service’s WSDL document (we will see
how to do this later in this chapter), changing the WSDL would cause all the
applications that rely on a specific method signature to break. If you antici-
pate frequent changes, you can use a document/literal style, because the im-
pact on the WSDL can be minimized. This is useful for the late binding pattern
discussed in Chapter 5.

3. Validate business documents. A Web service can use the capabilities of a val-
idating parser and schemas to describe and validate high-level business docu-
ments. This is opposed to RPC, where the XML describes the method and pa-
rameters encoded for that method call, which cannot be used to enforce high-
level business rules.

To enforce these rules for the document with RPC, a message must include an
XML document as a string parameter or attachment and must hide the valida-
tion in the implementation of the method being called. If an attachment
is not used, the service will have to deal with custom marshalling and un-
marshalling code for a possibly complex XML structure. This often leads to
valid calls with invalid parameters that are not detected till the entire struc-

334 Chapter 10 JAX-RPC

ture has been processed. In short, if the service is accepting or returning a
complex XML structure, a document style is better suited. The XML can be
validated against the schema prior to calling the service, and no custom mar-
shalling code is required.

4. Performance and memory limitations. Marshalling and unmarsalling pa-
rameters to XML in memory can be an intensive process. The SOAP model
inherently requires DOM-based processing of the envelope, which can lead
to large DOM trees in memory if the XML representation is complex. How-
ever, document style services can choose SAX handling of the including
XML document, to perform quicker and less memory intensive parsing. This
is critical for services that handle many simultaneous requests.

5. For fine-grained communication. With RPC calls, only a limited amount of
data can be passed around in a single invocation, and it is not possible to in-
clude multiple RPC calls in a single SOAP envelope. If the application re-
quires a significant amount of data to be passed around, RPC style with an at-
tachment (e.g.. an XML document) is better suited.

6. Request-response processing. SOAP messages are, by nature, one-way trans-
missions from a sender to a receiver, but they are usually combined to imple-
ment a request/response model. SOAP piggybacking on top of a request-
response–oriented transport, such as HTTP and JAX-RPC, is well suited to
applications that require synchronous request-response processing. Such ap-
plications typically involve retrieval of results based on some remote pro-
cedure execution, for which RPC/encoded messages are well suited.

7. Encoding scheme. The default encoding scheme specified by SOAP is usu-
ally sufficient. If you determine a need to use custom encoding (e.g., the
SOAP encoding doesn’t meet your needs because you have complex types
not addressed by JAX-RPC and SOAP), we recommend that you investigate
the document style route instead, since schemas are by far a richer metalan-
guage than SOAP encoding. This allows for a more complex arrangement of
information.

Document style combined with literal encoding allows validation. Changing
that to RPC/literal takes that benefit away, because the surrounding RPC ele-
ment does not appear in the schemas. A possible example where RPC/literal can
be used instead of document/literal is when multiple RPC operations return XML
documents using the same schema. Document/encoded takes away the benefits of
RPC/encoded but does not add anything in return.

Data Types and Serialization 335

> JAX-RPC Development

We have just covered how data can be transferred over the wire, along with the
rules and associated mechanics governing that. In this section, we will look at
how services can be developed and realized using JAX-RPC and the steps in-
volved in doing so.

Developing and consuming a JAX-RPC service can be categorized into five
steps:

1. Service definition

2. Service implementation

3. Service deployment

4. Service description

5. Service consumption

In walking through these steps we will develop the service example intro-
duced in Chapter 5. The example illustrates a bill payment service developed by
Flute Bank as part of its online operations.

1. Service Definition

The term service definition is used to refer to the abstraction that defines the pub-
licly surfaced view of the service. The service definition is represented as a Java
interface that exposes the service’s operations. The service definition is also called a
remote interface, because it must extend the java.rmi.Remote interface, and be-
cause all methods in it must throw a java.rmi.RemoteException. The code below
shows the BillPay Web service:

package com.flutebank.billpayservice;

import java.util.Date;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface BillPay extends Remote {
public PaymentConfirmation schedulePayment(Date date, String nickName, double

amount) throws ScheduleFailedException, RemoteException;

336 Chapter 10 JAX-RPC

public PaymentDetail[] listScheduledPayments() throws RemoteException;
public double getLastPayment(String nickname) throws RemoteException;

}

The methods in the interface must have valid JAX-RPC data types (disussed
earlier) as arguments and return types. If they are not a supported data type (e.g.
java.util.Map), then appropriate serializers and deserializers must be available, so
that these types can be marshaled and unmarshalled to and from their corre-
sponding XML representations. The data type can also be a holder class. Holders
and pluggable serializers are covered later in this chapter.

An implemenatation will usually verify this type information at compile time
and warn the developer if it is not correct. A request sent with incorrect type in-
formation at runtime will generate a SOAP fault, because it will not be able to
unmarshall the XML.

2. Service Implementation

The service implementation, also known as a servant, is the concrete representation
of the abstract service definition; it is a class that provides the implementation or
the service definition. The Java class must have a default constructor and must
implement the remote interface that defines the service. Listing 10.2 shows the
implementation for the BillPay service.

Listing 10.2 Implementation for Flute Bank’s BillPay service

package com.flutebank.billpayservice;

import java.util.Date;

public class BillPayImpl implements BillPay {

public BillPayImpl(){}

public PaymentConfirmation schedulePayment(Date date, String nickName, double
amount) throws ScheduleFailedException {

// invoke business logic like EJBs here
return new PaymentConfirmation(81263767,"Sprint PCS", amount);

}

JAX-RPC Development 337

public PaymentDetail[] listScheduledPayments() {
// lookup the detail objects and other business logic from EJBs here
PaymentDetail details[]=new PaymentDetail[1];
PaymentDetail dummy= new PaymentDetail("Digital Credit

Union","Credit",2000, new Date());
details[0]=dummy;
return details;

}

public double getLastPayment(String nickname) {
// lookup the detail objects and other business logic from EJBs for this
// nickname based on the callers user id

if(nickname.equalsIgnoreCase("my cable tv provider"))
return 829;

else
return 272;

}
}

Services are deployed in a JAX-RPC runtime, which is a container that imple-
ments the JAX-RPC specifications. By default, the runtime will just invoke the
methods corresponding to the RPC request in the Java implemenatation. The
service implementation can choose to provide hooks to allow the runtime to
manage the service’s lifecyle and allow the container to invoke callbacks on the
service when major lifecycle events occur. The “hook” is defined as a javax.xml
.rpc.server.ServiceLifeCycle interface that the service can implement. The
container will then invoke methods on this service appropriately, via this inter-
face. The interface defines an init(Object context) and a destroy() method:

public interface ServiceLifecycle{
public void init(Object obj) throws ServiceException;
public void destroy();

}

The behavior of these methods is similar to the init() and destroy() meth-
ods in a servlet. When the implementation is first instantiated, the init()
method is invoked, and a context object passed to it, the destroy() method is
called before the implementation needs to be removed (e.g., at shutdown or dur-
ing a resource crunch). These methods are good places to initialize and release ex-
pensive resources, such as database connections and remote references. The con-

338 Chapter 10 JAX-RPC

text is defined as an Object, to allow for different endpoint types to be used, as we
will see later (e.g., the context will be different for an HTTP endpoint and a JMS
endpoint).

As with a servlet, an implementation should not hold a client-specific state in
instance variables, because the runtime can invoke methods from multiple
threads. Architects should also avoid synchronizing the methods themselves.
There are other ways to maintain client state, as discussed in the next section.

3. Service Deployment

We mentioned earlier that a service is deployed in a JAX-RPC runtime. A service
endpoint is the perimeter where the SOAP message is received and the response
dispatched. It is the physical entity exposed to service consumers that essentially
services client requests. An endpoint is provided by the runtime and is not written
by developers. An endpoint is bound to the transport protocol. Because a run-
time is required to support an HTTP transport, JAX-RPC also defines the behav-
ior of an endpoint for this protocol as a Java servlet, as Figure 10.4 shows. >

The servlet receives the SOAP message as the HTTP request, determines the
servant to use for servicing that request, and delegates to it or its proxy represen-
tation (the tie). Once the service has done its work, the servlet is responsible for
packaging the SOAP message and sending it back over HTTP.

The exact implementation of the servlet endpoint is left up to the runtime.
The reference implementation contains a single servlet (com.sun.xml.rpc.server
.http.JAXRPCServlet) that delegates to a tie, based on the xrpcc-generated prop-

JAX-RPC Development 339

Even though a JAX-RPC runtime must support HTTP, it can use other trans-
ports as well. The JAX-RPC architecture is designed to be transport–
independent, even though it describes the way HTTP is used if it is chosen
as transport.

>

SOAP/HTTP

Servlet Generated tie

Service Implementation

Servlet container

Figure 10.4
Service

deployment

erties file (we will see this later in the chapter). Because the endpoint is a servlet, it
requires a Servlet 2.2—compliant container. Also, the packaging and deployment
to the endpoint of the service has to be the standard J2EE WAR file, with its defined
structure (WEB-INF/classes and the web.xml file, etc.)

If a service implementation implements the ServiceLifeCycle interface, the
context object passed in the init() is of type javax.xml.rpc.server.Servlet-
EndpointContext:

public interface ServletEndpointContext{
public MessageContext getMessageContext();
public Principal getUserPrincipal();
public HttpSession getHttpSession();
public ServletContext getServletContext();

}

This context provides methods to access the MessageContext, Principal,
HttpSession and ServletContext objects associated with the user. The listing be-
low shows an example of how this can be used. These objects are good places for
maintaining different kinds of state information:

• The HttpSession is a good place to maintain client-specific state, using the
getAttribute() and setAttribute() methods.

• The ServletContext is a good place to access application-specific state, such as
configuration parameters, Java Naming and Directory Interface (JNDI)
names, and JNDI contexts, using the getAttribute() and setAttribute()
methods.

• The MessageContext is a good place to obtain state set by message handlers
during preprocessing of the message. Handlers are covered in detail later in
the chapter.

public class BillPayImpl implements BillPay, ServiceLifecycle {
private ServletEndpointContext ctx;

public void init(java.lang.Object context){
ctx=(ServletEndpointContext)context;

}
public PaymentDetail[] listScheduledPayments() {

SOAPMessageContext msgctx= (SOAPMessageContext) (ctx.getMessageContext());
HttpSession session = ctx.getHttpSession();

ServletContext servletctx= ctx.getServletContext()

340 Chapter 10 JAX-RPC

// other code
}

}

The usage of the ServletEndpointContext is analogous to the SessionContext
and EntityContext in EJBs.

4. Service Description

Once the service is defined, implemented, and ready for deployment as an end-
point, it also must be described clearly for service consumers. This is where WDSL
comes in. Based on the service definition, the WSDL document describes the
service, its operations, arguments, return types, and the schema for the data types
used in them.

xrpcc Internals

The JAX-RPC reference implementation comes with the xrpcc (XML-based
RPC Compiler) tool, which reads a tool-specific XML configuration file and gen-
erates the client- or server-side bindings shown in Figure 10.5. A developer can
start with

• A remote interface and use xrpcc to generate the stubs, ties, and WSDL

• A WSDL document and generate the stubs to consume the service

• A WSDL document and generate the stubs, ties, and remote interface and im-
plement the service

Listing 10.3 shows the format for the XML configuration file xrpcc reads.

JAX-RPC Development 341

WSDL file

xml config

or

xrpcc

Service definition
and

service implementation
Servicename_config.properties if -server is used
Stub
Skeleton
Serializer, Deserializer for request-response structures
Serializer, Deserializer for faults
JavaBean classes from WSDL schema
Servant outline for implementation if -server is used
with WSDL

Figure 10.5
xrpcc artifacts

Listing 10.3 xrpcc configuration in the reference implementation

<?xml version=“1.0” encoding=“UTF-8”?>
<configuration xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/config”>
<service name=““ packageName=““ targetNamespace=““ typeNamespace=““>

<interface name=““ servantName=““ soapAction=““ soapActionBase=““>
<handlerChains>

<chain runAt=“ “ roles=““>
<handler className=““ headers=““>
<property name=““ value=““/>

</handler>
</chain>

</handlerChains>
</interface>

<typeMappingRegistry>
<import>

<schema namespace=““ location=““/>
</import>
<typeMapping encodingStyle=““>

<entry schemaType=““
javaType=““
serializerFactory=““
deserializerFactory=““/>

</typeMapping>
<additionalTypes>

<class name=““/>
</additionalTypes>

</typeMappingRegistry>
<handlerChains>

<chain runAt=“client” roles=““>
<handler className=““ headers=““>

<property name=““ value=““/>
</handler>

</chain>
</handlerChains>
<namespaceMappingRegistry>

<namespaceMapping namespace=““
packageName=““/>

</namespaceMappingRegistry>
</service>

</configuration>

342 Chapter 10 JAX-RPC

Key XML elements of the configuration are discussed below. Some refer to
concepts covered later in the chapter (e.g., handlers and typemappings).

Service Element. This describes the overall service. Only one service can be
defined in the XML descriptor, to prevent potential name clashes in the gener-
ated code for the different services and the types they use.

• name. The name of the service. This is also used as the value for the service el-
ement in the generated WSDL.

• package. The package name for the generated service classes. xrpcc generates
the stubs with the same package name as the service interface.

• targetnamespace. The target namespace for the generated WSDL document.

• typenamespace. The namespace for the schema portion of the generated
WSDL document.

Interface element. This defines details about the interface the service supports.
A service can have multiple interfaces.

• name. Fully qualified name of an interface, such as com.flutebank.billpay
.Billpay.

• servant. Fully qualified name of the service interface implementation.

• soapAction. Value to be used as the SOAPAction for all operations in the corre-
sponding port (optional).

• soapaActionBase. Value used as a prefix for the SOAPAction strings for the
operations in the corresponding port (optional).

Handlerchain element. Defines information about handlers for this service.
The handler element can be defined inside a service. If so, it is available to all
interfaces inside the interface element, in which case it is specific only to that
interface.

• runAt. Defines where the handler is to be executed. Possible values are client
or server.

• roles. Lists or defines the roles that the handler will run as. This is the
whitespace-separated List (xsd:anyURI)value returned by HandlerChain
.getRoles().

• className. Fully qualified name of the handler class.

JAX-RPC Development 343

• headers. The header blocks processed by the handler. This is the whitespace-
separated List(xsd:QName)-qualified name of a header block’s outermost ele-
ment.

• property. Multiple and arbitrary name-value pairs the handler can use inter-
nally, such as configuration and initialization parameters. These properties
are passed as input to Handler.init(HandlerInfo config) through the
“config” argument. The HandlerInfo.getHandlerConfig() method returns a
Map containing all property name-value pairs specified in the <property/> ele-
ments.

Typemapping registry element.

• import. Specifies a list of schema documents to import and is used to generate
the corresponding <wsdl:import/> and <schema:import/> elements.

• typeMapping. Contains one or more entry elements.

• entry. Specifies the encodingStyle, schemaType, Java class, and class for the
serializer and deserializer factories.

• additionalTypes. Specifies a list of Java classes that do not appear in the re-
mote interface but are still passed to JAX-RPC. For example, if in a method
with a signature

public java.util.List getPaymentDetails() throws RemoteException;

contains PaymentDetail objects, and the PaymentDetail class is not referenced
by any other method in the remote interface, then for xrpcc to generate and
register a serializer for the PaymentDetail type, this element must be specified:

<additionalTypes>
<class name=“com.flutebank.PaymentDetail “/>

</additionalType>

Namespace mapping registry.

• namespaceMapping

The –both option of the xrpcc tool can be used to generate stubs and ties to-
gether. Alternatively, the server and client code can be generated separately,
using the –server and –client options. Note that the –keep option must be used
to retain the WSDL file.

One of the artifacts xrpcc generates when it reads the XML descriptor is an
additional configuration file. So, what is this new configuration file? Remember,

344 Chapter 10 JAX-RPC

the service is being deployed in a servlet container, where the runtime-provided
endpoint exists (the reference implementation defined the endpoint as a
com.sun.xml.rpc.server.http.JAX-RPCServlet). This configuration file is used
to hook the endpoint with the service implementation. It is just an implementa-
tion detail that, like xrpcc itself, is specific to the reference implementation and is
not a part of the specifications. Other vendors may use a completely different
tool with its own mechanism. >

Java-WSDL Mappings

In Chapter 4, we discussed the WSDL structure, the role of vendor tools, and the
significance of a standard specification to map WSDL elements to Java (and vice
versa). To understand this mapping, let us revisit the role of WSDL elements
from that chapter (Figure 10.6).

A Web service exposes groups of business operations for service consumers
to use. Operations are grouped together to form portTypes. To invoke an opera-

JAX-RPC Development 345

The final version of the Hava WSDP and JAX pack include a tool called
wscompile. Currently there is no difference in the behavior of wscompile
and xrpcc; however in future versions wscompile is likely to evolve,
whereas xrpcc may not.

>

Input and output messages construct an
<operation>. A collection of <operation>

forms a <portType>.
<service> represents the actual
service being used. A service is

exposed as a <port>.

A <port> exposes the service using
a specific protocol binding.

<location> represents the network
endpoint for the port.

Messages have parts. Parts are
defined as schema in the <type>.

<binding> represents how ports
are accessed using a specific

protocol like SOAP/HTTP.

Message

Part

Part

Message

Part

Part

Service
consumer

ServicePortSOAP/HTTP Response

SOAP/HTTP Request

Figure 10.6
WSDL elements

and dynamic
interaction of a
service and its

consumer.

tion, the consumer sends an input message containing the input data. It gets an
outputmessage containing the data that results from the business processing, or a
fault if a problem occurs. The input and output messages may have multiple
data items in them; each is called a part.

The wire protocol used for the invocation and the format of the input and
output messages on the wire for that protocol are specified in a binding element.
The service exposes itself to consumers through one or more ports, each of which
specifies a network address where the service is located and the binding to use
with that port. A service may render itself though several ports, where each port
has a different binding (e.g., the same service may expose itself via SOAP/HTTP
and SOAP/SMTP).

JAX-RPC defines the mapping of Java to WSDL data types, and vice versa.
This is the mapping used by xrpccwhen generating a WSDL file or consuming it.
Table 10.6 summarizes this mapping. Listings 10.4 and 10.5 show a complete ex-
ample of a service definition and its corresponding WSDL generated on the basis
of these mappings.

346 Chapter 10 JAX-RPC

Table 10.6 Data Type Mapping between Java and WSDL

Java type WSDL mapping

Package WSDL document

Sample extract code

The namespace definition in a WSDL is mapped to a Java package name.

Java type WSDL mapping

Interface wsdl:portType

Sample extract code

public interface BillPay extends java.rmi.Remote {
// methods here
}

<portType name=“BillPay”>
// operations here

</portType>

Text continued on p. 355

JAX-RPC Development 347

Table 10.6 Data Type Mapping between Java and WSDL (Cont’d)

Java type WSDL mapping

Method wsdl:operation

1. The WSDL operation name is the same as the method
name.

2. Overloaded methods can map to multiple operations
with the same name or unique names that are
implementation-specific.

Sample extract code

public interface BillPay extends java.rmi.Remote {
public PaymentDetail[] listScheduledPayments()

throws RemoteException;
public PaymentConfirmation schedulePayment(

Date date, String payee, double amt)
throws ScheduleFailedException, RemoteException;

public double getLastPayment(String nickname) throws
RemoteException;

}

<portType name=“BillPay”>
<operation name=“listScheduledPayments”>

// input output messages for this operation
</operation>

<operation name=“schedulePayment”>
// input output messages for this operation

</operation>
<operation name=“getLastPayment”>

// input output messages for this operation
</portType>

Java type WSDL mapping

Extended interface wsdl:portType

with a complete set of inherited operations.

(Continued)

348 Chapter 10 JAX-RPC

Table 10.6 Data Type Mapping between Java and WSDL (Cont’d)

Sample extract code

Public interface LinkedBillPay extends BillPay {
public String getStatus() throws
java.rmi.RemoteException, StatusUnavilableException;
}
<portType name=“LinkedBillPay”>

<operation name=“listScheduledPayments”>
// input output messages for this operation

</operation>
<operation name=“schedulePayment”>

// input output messages for this operation
</operation>
<operation name=“getStatus”>

// input output messages for this operation
</operation>
</operation>

</portType>

Java type WSDL mapping

Method arguments wsdl:input and corresponding wsdl:message elements.

Sample extract code

public interface BillPay extends java.rmi.Remote {
public PaymentDetail[] listScheduledPayments()

throws RemoteException;
public PaymentConfirmation schedulePayment(Date
date, String payee, double amt)

throws ScheduleFailedException, RemoteException;
public double getLastPayment(String nickname) throws
RemoteException;
}

<portType name=“BillPay”>
<operation name=“getLastPayment”“>

<input message=“tns:BillPay_getLastPayment”/>
// output message

JAX-RPC Development 349

Table 10.6 Data Type Mapping between Java and WSDL (Cont’d)

</operation>
<operation name=“listScheduledPayments”>

<input message=“tns:BillPay_listScheduledPayments”/>
// output message

</operation>
<operation name=“schedulePayment” >

<input message=“tns:BillPay_schedulePayment”/>
// output message

</operation>
</portType>

<message name=“BillPay_getLastPayment”>
<part name=“String_1” type=“xsd:string”/></message>

<message name=“BillPay_listScheduledPayments”/>
<message name=“BillPay_schedulePayment”>

<part name=“Date_1” type=“xsd:dateTime”/>
<part name=“String_2” type=“xsd:string”/>
<part name=“double_3” type=“xsd:double”/></message>

Java type WSDL mapping

Method returns wsdl:output and corresponding wsdl:message elements.

Sample extract code

public interface BillPay extends java.rmi.Remote {
public PaymentDetail[] listScheduledPayments()

throws RemoteException;
public PaymentConfirmation schedulePayment(Date date, String payee,

double amt)
throws ScheduleFailedException, RemoteException;

public double getLastPayment(String nickname) throws
RemoteException;

<message name=“BillPay_getLastPaymentResponse”>
<part name=“result” type=“xsd:double”/></message>

<message name=“BillPay_listScheduledPaymentsResponse”>
<part name=“result” type=“tns:ArrayOfPaymentDetail”/></message>

(Continued)

350 Chapter 10 JAX-RPC

Table 10.6 Data Type Mapping between Java and WSDL (Cont’d)

<message name=“BillPay_schedulePaymentResponse”>
<part name=“result” type=“tns:PaymentConfirmation”/></message>

<portType name=“BillPay”>
<operation name=“getLastPayment” parameterOrder=“String_1”>

// input message here
<output message=“tns:BillPay_getLastPaymentResponse”/>

</operation>
<operation name=“listScheduledPayments” parameterOrder=““>

// input message here
<output message=“tns:BillPay_listScheduledPaymentsResponse”/>

</operation>
<operation name=“schedulePayment” parameterOrder=“Date_1

String_2 double_3”>
<output message=“tns:BillPay_schedulePaymentResponse”/>

</operation></portType>

Java type WSDL mapping

Checked exceptions wsdl:fault

1. wsdl:message name is the same as the exception
name.

2. RemoteExceptions are mapped to standard SOAP
faults.

3. The exception and its hierarchies get mapped to XML
types in the schema, using the standard complexType
extension mechanism.

Sample extract code

public interface BillPay extends java.rmi.Remote {
// other code

public PaymentConfirmation schedulePayment(Date
date, String payee, double amt)

throws ScheduleFailedException, RemoteException;
}

JAX-RPC Development 351

Table 10.6 Data Type Mapping between Java and WSDL (Cont’d)

<operation name=“schedulePayment”>
// input and output elements

<fault name=“ScheduleFailedException”>
<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/

encoding/” use=“encoded” namespace=“http://www.flutebank.com/xml”/>
</fault>

<soap:operation soapAction=““/>
</operation>
<message name=“ScheduleFailedException”>

<part name=“ScheduleFailedException” type=
“tns:ScheduleFailedException”/></message>

Java type WSDL mapping

Java identifiers XML name.

Sample extract code

Java identifiers are already legal XML names.

public class PaymentDetail {
private String payeeName;
private String account;
private double amt;
private Date date;
// other code

<types>
// other code
<complexType name=“PaymentDetail”>

<sequence>
<element name=“date” type=“dateTime”/>
<element name=“account” type=“string”/>
<element name=“payeeName” type=“string”/>
<element name=“amt” type=“double”/></sequence>

</complexType>
</types>

Listing 10.4 Source file for BillPay.java

package com.flutebank.billpayservice;

import java.util.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface BillPay extends Remote {

public PaymentConfirmation schedulePayment(Date date, String nickName, double amount)
throws ScheduleFailedException, RemoteException;

public PaymentDetail[] listScheduledPayments() throws RemoteException;

public double getLastPayment(String nickname) throws RemoteException;
}

Listing 10.5 WSDL billservice.java corresponding to Listing 10.4

<?xml version=“1.0” encoding=“UTF-8”?>
<definitions name=“billpayservice” targetNamespace=“http://www.flutebank.com/xml”
xmlns:tns=“http://www.flutebank.com/xml” xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema” xmlns:soap=“http://schemas.xmlsoap.org/
wsdl/soap/”>

<types>
<schema targetNamespace=“http://www.flutebank.com/xml” xmlns:wsdl=“http://

schemas.xmlsoap.org/wsdl/” xmlns:tns=“http://www.flutebank.com/xml” xmlns:xsi=“http://
www.w3.org/2001/XMLSchema-instance” xmlns:soap-enc=“http://schemas.xmlsoap.org/soap/
encoding/” xmlns=“http://www.w3.org/2001/XMLSchema”>

<import namespace=“http://schemas.xmlsoap.org/soap/encoding/”/>
<complexType name=“ArrayOfPaymentDetail”>

<complexContent>
<restriction base=“soap-enc:Array”>

<attribute ref=“soap-enc:arrayType” wsdl:arrayType=
“tns:PaymentDetail[]”/>

</restriction>
</complexContent>

</complexType>
<complexType name=“PaymentDetail”>

<sequence>
<element name=“date” type=“dateTime”/>

352 Chapter 10 JAX-RPC

<element name=“account” type=“string”/>
<element name=“payeeName” type=“string”/>
<element name=“amt” type=“double”/>
</sequence>

</complexType>
<complexType name=“PaymentConfirmation”>

<sequence>
<element name=“confirmationNum” type=“int”/>
<element name=“payee” type=“string”/>
<element name=“amt” type=“double”/>
</sequence>

</complexType>
<complexType name=“ScheduleFailedException”>

<sequence>
<element name=“message” type=“string”/>
<element name=“localizedMessage” type=“string”/>

</sequence>
</complexType>

</schema>
</types>
<message name=“BillPay_getLastPayment”>

<part name=“String_1” type=“xsd:string”/>
</message>
<message name=“BillPay_getLastPaymentResponse”>

<part name=“result” type=“xsd:double”/>
</message>
<message name=“BillPay_listScheduledPayments”/>
<message name=“BillPay_listScheduledPaymentsResponse”>

<part name=“result” type=“tns:ArrayOfPaymentDetail”/>
</message>
<message name=“BillPay_schedulePayment”>

<part name=“Date_1” type=“xsd:dateTime”/>
<part name=“String_2” type=“xsd:string”/>
<part name=“double_3” type=“xsd:double”/>

</message>
<message name=“BillPay_schedulePaymentResponse”>

<part name=“result” type=“tns:PaymentConfirmation”/>
</message>
<message name=“ScheduleFailedException”>

<part name=“ScheduleFailedException” type=“tns:ScheduleFailedException”/>
</message>

JAX-RPC Development 353

<portType name=“BillPay”>
<operation name=“getLastPayment” parameterOrder=“String_1”>

<input message=“tns:BillPay_getLastPayment”/>
<output message=“tns:BillPay_getLastPaymentResponse”/>

</operation>
<operation name=“listScheduledPayments” parameterOrder=““>

<input message=“tns:BillPay_listScheduledPayments”/>
<output message=“tns:BillPay_listScheduledPaymentsResponse”/>

</operation>
<operation name=“schedulePayment” parameterOrder=“Date_1 String_2

double_3”>
<input message=“tns:BillPay_schedulePayment”/>
<output message=“tns:BillPay_schedulePaymentResponse”/>
<fault name=“ScheduleFailedException” message=

“tns:ScheduleFailedException”/>
</operation>
</portType>

<binding name=“BillPayBinding” type=“tns:BillPay”>
<operation name=“getLastPayment”>

<input>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”

use=“encoded” namespace=“http://www.flutebank.com/xml”/>
</input>
<output>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
use=“encoded” namespace=“http://www.flutebank.com/xml”/>

</output>
<soap:operation soapAction=““/>

</operation>
<operation name=“listScheduledPayments”>

<input>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”

use=“encoded” namespace=“http://www.flutebank.com/xml”/>
</input>
<output>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
use=“encoded” namespace=“http://www.flutebank.com/xml”/>

</output>
<soap:operation soapAction=““/>

</operation>

354 Chapter 10 JAX-RPC

<operation name=“schedulePayment”>
<input>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
use=“encoded” namespace=“http://www.flutebank.com/xml”/>

</input>
<output>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
use=“encoded” namespace=“http://www.flutebank.com/xml”/>

</output>
<fault name=“ScheduleFailedException”>

<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
use=“encoded” namespace=“http://www.flutebank.com/xml”/>

</fault>
<soap:operation soapAction=““/>

</operation>
<soap:binding transport=“http://schemas.xmlsoap.org/soap/http” style=“rpc”/>

</binding>
<service name=“Billpayservice”>

<port name=“BillPayPort” binding=“tns:BillPayBinding”>
<soap:address location=“http://127.0.0.1:9090/billpayservice/jaxrpc/BillPay”/>

</port>
</service>

</definitions>

5. Service Consumption

Until now, we have seen how to define, implement, and deploy a JAX-RPC ser-
vice. Let us now look at how such a service can be consumed. A service consumer
represents the abstraction of the entity invoking the facilities of an existing ser-
vice. Invocation modes for doing so fall into three broad categories:

• Synchronous request-response. The client invokes a remote procedure and
blocks until a response or an exception is received from the service. The client
cannot do any other work while awaiting the response. This is analogous to
making a phone call. Either someone responds by picking up the handset on
the other end, or a busy tone is received.

• One-way RPC. The client invokes a remote procedure but does not block or
wait to receive a return and is free to do other work. In fact the client does not

JAX-RPC Development 355

receive any return parameters. This is analogous to sending a fax (fire and for-
get!). When a fax is sent, a person does not need to pick up the phone on the
receiving end for the fax to go through.

• Nonblocking RPC invocation. The client invokes a remote procedure and
continues processing without waiting for a return. The client may process the
return later by polling some service or by using some other notification mech-
anism. This is analogous to making a phone call and getting an answering ma-
chine. The caller leaves a message and continues. The person on the other end
gets the message and returns the call by dialing the number left on the ma-
chine or a number he or she already knows.

The significant difference between one-way and nonblocking invocation is
that in the former, the client will not receive a return value.

As a bare minimum, JAX-RPC implementations must support the first two
modes for client invocation and HTTP 1.1 as the transport binding for SOAP.
The sematics of nonblocking RPC are quite complicated. For example, the client
must inform the service of an endpoint to which the service can repond, and
both parties must deal with issues of reliability and availability. If your applica-
tion requires asynchronous communication, messaging is probably more appro-
priate. See Chapter 11 for details.

Let us now look at the mechanisms an RPC client can use to consume the ser-
vice in these invocation modes. The client can be written to invoke the service
using one of the following three mechanisms:

• Stub

• Dynamic invocation interface

• Dynamic proxies

In Chapter 5, we described WSDL use cases and early/late binding patterns
associated with them. The reader is encouraged to revisit that section before con-
tinuing. Recall the usage patterns:

• Static compile-time binding

• Static deploy-time binding

• Static runtime binding

356 Chapter 10 JAX-RPC

• Dynamic binding

• Dynamic binding with known location

The examples of clients in the following sections show how some of these pat-
terns can be realized.

Clients Using Stubs

Figure 10.1 introduced the concept of stubs. Clients locate the service endpoint
by specifying a URI, then simply invoke the methods on a local object, a stub that
represents the remote service. JAX-RPC stubs, or proxies, as they are sometime re-
ferred to, are very different from RMI-IIOP stubs. Keep the following in mind:

• A stub is never required to be downloaded or distributed to clients.

• A client is not a required artifact on the client side. The end result of the invo-
cation is that the required SOAP envelope must be sent on the transport pro-
tocol. The client can be written in a completely different programming lan-
guage, as shown later in the JAX_RPC Interoperability section.

• The stub is implemented in Java and is relevant only for a JAX-RPC client
runtime.

• A stub can be dynamically generated by the client side at runtime.

• A stub is specific to the client runtime.

• A stub is specific to a protocol and transport.

• A stub must implement the javax.xml.rpc.Stub interface.

The tie represents the server-side skeleton for the implementation. It is used
by the endpoint to communicate with the implementation and is generated
using tools (such as xrpcc) when the implementation is deployed.

Using stubs is also sometime referred to as static invocation, because the stub
must know the remote interface about the service at compile time. It must have the
class file representing the remote interface and the implementation available for
stub generation to proceed. The client does not need the WSDL file describing
the service at runtime. Stubs are specific to a particular runtime and are not porta-
ble across vendor implementations.

The code in Listing 10.6 shows the fragment for invoking the Billpayservice
developed previously.

JAX-RPC Development 357

Listing 10.6 Client using stubs

// import generated xrpcc classes + interface class + Helper classes for interface
import com.flutebank.billpayservice.*;
import java.util.Date;

public class StubClient {
public static void main(String[] args) throws Exception {

String endpoint=“http://127.0.0.1:8080/billpayservice/jaxrpc/BillPay”;
String namespace = “http://www.flutebank.com/xml”;
String wsldport = “BillPayPort”;
Billpayservice_Impl serviceproxy= new Billpayservice_Impl();
BillPay_Stub stub=(BillPay_Stub)(serviceproxy.getBillPayPort());
stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,endpoint);
PaymentConfirmation conf= stub.schedulePayment(new Date(),

“my account at sprint”, 190);
System.out.println(“Payment was scheduled “ + conf.getConfirmationNum());
PaymentDetail detail[]=stub.listScheduledPayments();

for(int i=0;i<detail.length;i++) {
System.out.println(“Payee name “+ detail[i].getPayeeName());
System.out.println(“Account “+ detail[i].getAccount());
System.out.println(“Amount “+ detail[i].getAmt());
System.out.println(“Will be paid on “ + detail[i].getDate());
}

double lastpaid= stub.getLastPayment(“my cable tv provider”);
System.out.println(“Last payment was “ + lastpaid);

}
}

Before using a stub, a client must first obtain a reference to it. The exact mech-
anism is specific to the implementation. The reference implementation for the
stub is obtained by instantiating the service implementation class. The code be-
low shows the mechanism another vendor might use:

InitialContext ctx = new InitialContext();
Billpayservice service =

(Billpayservice) ctx.lookup(“myserver:soap:Billpayservice”);
BillPay bill = service. getBillPayPort ();
Stub stub= ((Stub) bill;

358 Chapter 10 JAX-RPC

The stub can be configured by passing it name-value pairs of properties. The
javax.xml.rpc.Stub interface defines four standard properties to configure the
stub, using the stub. _setProperty(java.lang.String name, java.lang.Object
value) method:

• javax.xml.rpc.security.auth.username. Username for authentication.

• javax.xml.rpc.security.auth.username.password. Password for authentica-
tion.

• javax.xml.rpc.service.endpoint.address. Optional string for the endpoint
service.

• javax.xml.rpc.session.maintain. Use java.lang.Boolean to indicate that
the server needs to maintain session for the client.

Clients Using DII

The second way a consumer can access a service involves the use of dynamic in-
vocation interface (DII) instead of static stubs. DII is a concept that, like most
other things in JAX-RPC, should be familiar to CORBA developers. Unlike
static invocation, which requires that the client application include a client stub,
DII enables a client application to invoke a service whose data types were un-
known at the time the client was compiled. This allows a client to discover inter-
faces dynamically—in other words, at runtime rather than compile time—and in-
voke methods on objects that implement those interfaces.

JAX-RPC supports DII with the javax.xml.rpc.Call interface. A Call object
can be created on a javax.xml.rpc.Service using the port name and service
name. Then, during runtime, the following details are set:

• Operation to invoke

• Port type for the service

• Address of the endpoint

• Name, type, and mode (in, out, inout) of the arguments

• Return type

This information is derived by looking at the WSDL file for the service. For
example, the service name is the service name=“Billpayservice”> element, the
portname is the port name=“BillPayPort” element, and so on. Listing 10.7 shows
a DII client where a Call object is configured for the getLastPayment method.

JAX-RPC Development 359

The client code wraps the DII request in a Call object. DII can be used di-
rectly, by passing these values (port, operation, location, and part information)
to the Call, or indirectly, by passing the WSDL to the Call. Listing 10.7 shows
how a DII client can be written using the former. (QName is a common class used
to represent a qualified name in different XML APIs. The qualified name of an
XML element consists of its namespace declaration and its local name in the
namespace.)

Listing 10.7 Client using DII directly, where all parameters are known (WSDL is not passed)

import javax.xml.namespace.QName;
import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.ParameterMode;
import javax.xml.rpc.ServiceFactory;

public class DIIClient_NoWSDL{
public static void main(String[] args) throws Exception {

String endpoint=“http://127.0.0.1:9090/billpayservice/jaxrpc/BillPay”;
String namespace = “http://www.flutebank.com/xml”;
String schemanamespace = “http://www.w3.org/2001/XMLSchema”;
String serviceName = “Billpayservice”;

ServiceFactory factory = ServiceFactory.newInstance();
// the Billpayservice service does not exist
// (no stub, skeleton, or Service was generated by xrpcc)
// but createService will return a Service object
// that can be used to create the dynamic call

Service service = (Service) factory.createService
(new QName(namespace,serviceName));

QName portName = new QName(namespace,”BillPayPort”);
QName operationName = new QName(namespace,”getLastPayment”);
Call call = service.createCall(portName, operationName);
call.setTargetEndpointAddress(endpoint);
call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY,

“http://schemas.xmlsoap.org/soap/encoding/”);

QName paramtype = new QName(schemanamespace, “string”);

360 Chapter 10 JAX-RPC

QName returntype = new QName(schemanamespace, “double”);

call.addParameter(“String_1”, paramtype, ParameterMode.IN);
call.setReturnType(returntype);

Object[] params = {“my cable tv provider”};
Object lastpaid= (Double)call.invoke(params);
System.out.println(“Last payment was “ + lastpaid);

}
}

What is relevant in Listing 10.7 is that there is no coupling between the ser-
vice interface and the client (e.g., see import statements).

In indirect DII, only the port and operation names are knowm at compile
time. The runtime will determine the type information about the part and loca-
tion, based on the WSDL. In this case, the parameters and return types do not
need to be configured using the addParameter or setReturnType method. Listing
10.8 shows a sample DII client using the WSDL.

Listing 10.8 Client using DII indirectly, where all parameters are not known (WSDL is dynamically

inspected)

public class DIIClient_WSDL{

public static void main(String[] args) throws Exception {

String wsdllocation= http://127.0.0.1:9090/billpayservice/billpayservice.wsdl”;

String namespace = “http://www.flutebank.com/xml”;
String serviceName = “Billpayservice”;

ServiceFactory factory = ServiceFactory.newInstance();
Service service = (Service) factory.createService

(new URL(wsdllocation),new QName(namespace,serviceName));

QName portName = new QName(namespace,”BillPayPort”);
QName operationName = new QName(namespace,”getLastPayment”);
Call call = service.createCall(portName, operationName);

JAX-RPC Development 361

Object[] params = {“my cable tv provider”};
Object lastpaid= (Double)call.invoke(params);
System.out.println(“Last payment was “ + lastpaid);

}
}

Note that neither use of DII generates stubs.

WSDL with DII. When deciding whether to use WSDL or not in the client, keep
in mind that though it may be more convenient to use, it requires an extra net-
work call and processing overhead for the runtime to fetch and process the
WSDL and perhaps even validate the call against the WSDL.

One of the major differences between static invocation and dynamic invoca-
tion is that, while both support synchronous communication, only DII supports
one-way communication. From an API perspective, instead of using the in-
voke() method, DII can be used to invoke the invokeOneWay(java.lang.Ob-
ject[] inputParams) method. Attempting to invoke a call.getOutputParams()
in a one-way invocation will result in a JAX-RPCException.

Clients Using Dynamic Proxies

The JAX-RPC specification also specifies a third way for clients to access services:
using the concept of dynamic proxy classes available in the standard J2SE Reflec-
tion API (the java.lang.reflect.Proxy class and the java.lang.reflect
.InvocationHandler interface). A dynamic proxy class implements a list of inter-
faces specified at runtime. The client can use this proxy or façade as though it ac-
tually implemented these interfaces, although it actually delegates the invoca-
tion to the implementation.

Classes allowing any method on any of these interfaces can be called directly
on the proxy (after casting it). Thus, a dynamic proxy class is used to create a type-
safe proxy object for an interface list without requiring pregeneration of the
proxy class, as you would with compile-time tools. Listing 10.9 shows how a
client can use dynamic proxies.

Listing 10.9 Client using dynamic proxies

// jaxrpc classes
import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;

362 Chapter 10 JAX-RPC

// java classes
import java.util.Date;
import java.net.URL;
// Interface class
import com.flutebank.billpayservice.BillPay;

public class DynamicProxyClient {
public static void main(String[] args) throws Exception{

String namespace = “http://www.flutebank.com/xml”;
String wsldport = “BillPayPort”;
String wsdlservice = “Billpayservice”;
String wsdllocation =

“http://127.0.0.1:8080/billpayservice/billpayservice.wsdl”;
URL wsldurl = new URL(wsdllocation);
ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsldurl,

new QName(namespace, wsdlservice));
// make the call to get the stub corresponding to this service and interface

BillPay stub = (BillPay) service.getPort(new QName(namespace,wsldport),
BillPay.class);

// invoke methods on the service
double lastpaid= stub.getLastPayment(“my cable tv provider”);
System.out.println(“Last payment was “ + lastpaid);

}
}

In Listing 10.9, there is no compile-time stub generation. The getPort()
method will return the proxy, which is also required to implement the Stub inter-
face at runtime—that is, the stub is generated internally at runtime. Again,
CORBA developers will see the similarity in the above code with its counterpart:

BillPay stub = (BillPay)PortableRemoteObject.narrow(initial.lookup(“Billpayservice”),
BillPay.class);

Clients Using WSDL

Until now, we have seen how to start with a Java service definition and imple-
ment it as an XML-RPC Web service. One could also do the reverse:

JAX-RPC Development 363

• Start with a WSDL file for an existing service and generate the stubs, to con-
sume the service.

• Start with a WSDL file and generate the ties (and stubs if needed) and remote
interfaces, and fill in appropriate business logic to implement the service.

Let us look at how to consume the Billpayservice Web service using the ser-
vice’s WSDL and the WSDL 1.1–compliant xrpcc tool. The client-side bindings
are generated from the WSDL using xrpcc, with only a configuration file change:

<?xml version=“1.0” encoding=“UTF-8”?>
<configuration xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<wsdl location=http://127.0.0.1:9090/billpayservice/billpayservice.wsdl
packageName=“generated”>

</wsdl>
</configuration>

The client-side code is identical to the StubClient shown previously, except
that

• The client no longer depends on the server interfaces but is coupled to the
tool-generated classes—which, from the above configuration, reside in a gener-
ated package (see import statement).

• The Date parameter has been changed to Calendar, as per the date type
mappings from XML to Java specified in Tables 10.3a and 10.3b.

• The endpoint does not need to be configured (unless you want to) and is
picked from the soap:address element in the WSDL by the tool.

import generated.*; // generated classes by xrpcc from WSDL file
import java.util.Calendar;

public class WSDLClient {
public static void main(String[] args) throws Exception {

String namespace = “http://www.flutebank.com/xml”;
String wsldport = “BillPayPort”;
Billpayservice_Impl serviceproxy= new Billpayservice_Impl();
BillPay_Stub stub=(BillPay_Stub)(serviceproxy.getBillPayPort());
PaymentConfirmation conf=stub.schedulePayment(Calendar.getInstance(),

“my account at sprint”, 190);
System.out.println(“Payment was scheduled “ +

conf.getConfirmationNum());

364 Chapter 10 JAX-RPC

PaymentDetail detail[]=stub.listScheduledPayments();
for(int i=0;i<detail.length;i++) {

System.out.println(“Payee name “+ detail[i].getPayeeName());
System.out.println(“Account “+ detail[i].getAccount());
System.out.println(“Amount “+ detail[i].getAmt());
System.out.println(“Will be paid on “ +

detail[i].getDate().getTime());
}
double lastpaid= stub.getLastPayment(“my cable tv provider”);
System.out.println(“Last payment was “ + lastpaid);

}
}

What Client Is Right for Me?

Choosing either option shown above to implement the client affects only client-
side development. When a server method is invoked, that server has no knowl-
edge of whether a method was invoked via the conventional static stub mecha-
nism, through DII, through proxies, or even by a non-Java client. From the
server’s perspective, it receives a SOAP request and generates a SOAP response;
these are identical for all client types. For example, Listings 10.10a and 10.10b
show SOAP request and response messages for the getLastPayment() method,
which is identical for stubs, DII (with or without WSDL), dynamic proxies, or
WSDL.

Listing 10.10a SOAP request

POST /billpayservice/jaxrpc/BillPay HTTP/1.1
Content-Type: text/xml; charset=“utf-8”
Content-Length: 506
SOAPAction: “”
User-Agent: Java1.3.1_01
Host: 127.0.0.1:9090
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<?xml version=“1.0” encoding=“UTF-8”?>
<env:Envelope xmlns:env=“http://schemas.xmlsoap.org/soap/envelope/” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance” xmlns:enc=“http://schemas.xmlsoap.org/soap/encoding/” xmlns:ns0=“http://
www.flutebank.com/xml” env:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>

JAX-RPC Development 365

<env:Body>
<ns0:getLastPayment>

<String_1 xsi:type=“xsd:string”>my cable tv provider</String_1>
</ns0:getLastPayment>
</env:Body>
</env:Envelope>

Listing 10.10b SOAP response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=“utf-8”
SOAPAction: ““
Transfer-Encoding: chunked
Date: Mon, 29 Jul 2002 19:28:50 GMT
Server: Apache Coyote HTTP/1.1 Connector [1.0]

<?xml version=“1.0” encoding=“UTF-8”?>
<env:Envelope xmlns:env=“http://schemas.xmlsoap.org/soap/envelope/” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance” xmlns:enc=“http://schemas.xmlsoap.org/soap/encoding/” xmlns:ns0=“http://
www.flutebank.com/xml” env:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>

<env:Body>
<ns0:getLastPaymentResponse>

<result xsi:type=“xsd:double”>829.0</result>
</ns0:getLastPaymentResponse>

</env:Body>
</env:Envelope>

In most practical situations, an enterprise will develop a service and publish
its WSDL. Service consumers will use the WSDL and a vendor-provided tool
(such as xrpcc) to generate client-side bindings and invoke the service. This has
several advantages. There is no distribution of client code (e.g., remote inter-
faces), and in most cases, the tool will generate the serializers and deserializers,
using the encoding scheme. For example, xrpcc generates the serializers and
deserializers using the SOAP encoding scheme for PaymentDetail[] and
PaymentDetail and maps the supported XML Schema types to Java.

Using stubs directly has the disadvantage of having to share the Java interface
(and interface-dependent classes) with the service consumer. However, in scenar-
ios where services will be developed within the boundaries of the enterprise,
static stubs are the preferred client model, along the same lines as above. The per-
formance with stubs is also expected to be better, since all type casting informa-
tion is built in. All that occurs at runtime is service invocation.

366 Chapter 10 JAX-RPC

DII is quite attractive, because it allows dynamic creation and invocation of
object requests. In most cases, the architect of an application knows the kind of
objects the application will need to access, and if not, WSDL should suffice. In
some cases, such as object browsers and object brokers, DII is useful, but we
don’t envision these as frequent.

In practical situations and architecturally, DII is also not completely dy-
namic. Let us explain this further. Enterprise-level Web services will be coarse-
grained and will frequently deal with passing data objects, such as the JavaBean’s
(e.g., PaymentDetail or PaymentConfirmation, as in the StubClient.java exam-
ple). Simple data types will not suffice. For a DII client to be able to invoke these
services, it will need the classes at compile time for the objects being passed
around. (For example, if the DII code above invoked the schedulePayment
method, the result would be a PaymentConfirmation object). The question is,
where do these classes come from? The alternatives include using the same
classes as the service, producing a coupling, or producing the classes from
WSDL, using a tool (xrpcc). Further, if the data type that needs to be passed
around is a custom type and not a JavaBean (e.g., a vector), a serializer and
deserializer would need to be written for it. All this offsets the benefits DII offers
of being a “dynamic invocation” at runtime.

> Advanced JAX-RPC

Attachments in JAX-RPC

A SOAP message may also contain one or more attachments using the MIME
encoding, as Listing 10.11 shows. This is often refered to as a compound message.
The attachments are referenced in the SOAP message with an HREF, analogous
to how HTML anchor tags are used to create links on the same Web page. The
special characters in Listing 10.11 are the binary content of the attachment
printed as text.

Listing 10.11 A compound message with a MIME attachment

<?xml version=“1.0” encoding=“UTF-8”?>
<env:Envelope... >
<env:Body>
<storeDocumentService>

<!--Some XML Here-->
<something xsi:type=“ns1:something” href=“cid:ID1”/>

Advanced JAX-RPC 367

</storeDocumentService>
</env:Body>
</env:Envelope>

--3317565.1028340932732.JavaMail.Administrator.BYTECODE
Content-Type: application/octet-stream
Content-Id: ID1

ÐÏ_à¡±_á

Sending information in an attachment rather than in the SOAP message
body is more efficient, because smaller SOAP message bodies are processed
faster. The message contains only a reference to the data and not the data itself,
which reduces the translation time in mapping the data to Java objects. JAX-RPC
uses the JavaBeans activation framework for dealing with SOAP attachments.
When unmarshalling this message to Java, the JAX-RPC runtime can use either
of two mapping techniques:

• It can map well-known MIME types to Java objects, as per Table 10.7, and vice
versa, using built-in DataHandlers and DataContentHandlers in the runtime.

• It can map the attachment to a javax.activation.DataHandler using the
JavaBeans Activation framework, and vice versa.

What this essentially means is that if a method in a service implementation is
exposed in a Web service and has a return type that contains either a Java type, as
per the mappings shown in Table 10.2, or a DataHandler, the runtime will marshal
that as an attachment to the outgoing SOAP message. If the argument is of the
type in Table 10.7 or is a DataHandler, it will be passed the corresponding attach-
ment from the incoming SOAP message. The content of the attachment can
then be extracted using a getContent() on the DataHandler. If the installed
DataContentHandler does not understand the content, it will return a java.io
.InputStream object with the raw bytes. >

368 Chapter 10 JAX-RPC

The JavaBeans Activation framework is a standard extension API originally
designed for bean components. It adds support for typing arbitrary blocks
of data and handling the content accordingly.

>

Let us now look at an example of a Flute Bank Web service that stores and ar-
chives any incoming documents it receives from partners. The remote interface
defines a single method, as shown in the following code.

public interface AttachmentService extends Remote{
public String storeDocumentService(DataHandler dh,String filename)

throws RemoteException;
}

The service implementation (Listing 10.12a) is also straightforward; it just ex-
tracts the content from the DataHandler and stores it to a file. It returns a date/
timestamp to the caller.

Listing 10.12a Service implementation for processing attachments

public class AttachmentServiceImpl implements AttachmentService {
/**

* This method implements a web service that stores any attachment it receives.
*/

public String storeDocumentService(DataHandler dh, String filename) {
try{

BufferedOutputStream out = new BufferedOutputStream(new
FileOutputStream (filename));

BufferedInputStream in = new BufferedInputStream (dh.getInputStream());

byte[] buffer = new byte[256];
while (true) {

int bytesRead = in.read(buffer);
if (bytesRead == -1)

break;

Advanced JAX-RPC 369

Table 10.7 MIME-to-Java Data Type Mapping

MIME Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

text/xml or application/xml javax.xml.transform.Source

out.write(buffer, 0, bytesRead);
}

in.close();
out.close();
}catch(Exception e){

System.out.println(e);
return e.toString();

}
return (“File processes succesfully “ + filename + “ “ + new Date());

}
}

Listing 10.12b shows the xrpcc configuration used to generate stubs and ties.

Listing 10.12b xrpcc configuration for stub and tie generation

<?xml version=“1.0” encoding=“UTF-8”?>
<configuration

xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/config”>
<service name=“attachservice”

targetNamespace=“http://www.flutebank.com/xml”
typeNamespace=“http://www.flutebank.com/xml”
packageName=“com.flutebank.attachmentservice”>
<interface name=“com.flutebank.attachmentservice.AttachmentService”

servantName=“com.flutebank.attachmentservice.AttachmentServiceImpl”/>
</service>

</configuration>

The relevant extract from the client code is shown below, where the stub is
instantiated and the service invoked:

Attachservice_Impl() service =new Attachservice_Impl();
AttachmentService_Stub stub=(AttachmentService_Stub)

(service.getAttachmentServicePort());
stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,url);

DataHandler dh = new DataHandler(new FileDataSource(filename));
String response = stub.storeDocumentService(dh,filename);
System.out.println(“Response from server “ + response);

The SOAP request to the server includes an attachment, as shown below. The
MIME segments are highlighted:

370 Chapter 10 JAX-RPC

POST /attachmentservice/jaxrpc/AttachmentService HTTP/1.1
Content-Type: multipart/related; type=“text/xml”; boundary=
3317565.1028340932732.JavaMail.Administrator.BYTECODE
Content-Length: 26994
SOAPAction: ““
User-Agent: Java1.3.1_01
Host: 127.0.0.1:9090
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

--3317565.1028340932732.JavaMail.Administrator.BYTECODE
Content-Type: text/xml

<?xml version=“1.0” encoding=“UTF-8”?>
<env:Envelope xmlns:env=“http://schemas.xmlsoap.org/soap/envelope/” xmlns:xsd=
“http://www.w3.org/2001/XMLSchema” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance” xmlns:enc=“http://schemas.xmlsoap.org/soap/encoding/” xmlns:ns0=
“http://www.flutebank.com/xml” xmlns:ns1=“http://java.sun.com/jax-rpc-ri/internal”
env:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”><env:Body>
<ns0:storeDocumentService><DataHandler_1 xsi:type=“ns1:datahandler” href=“cid:ID1”/>
<String_2 xsi:type=“xsd:string”>Uploadme.doc</String_2></ns0:storeDocumentService>
</env:Body></env:Envelope>

--3317565.1028340932732.JavaMail.Administrator.BYTECODE
Content-Type: application/octet-stream
Content-Id: ID1

ÐÏ_à¡±_á

xrpcc contains an option—Xdatahandleronly—that forces attachments to al-
ways map to the DataHandler, instead of to the mappings shown in Table 10.7.

MessageHandlers and HandlerChains

A SOAP message handler is a Java class that provides a filtering mechanism for
preprocessing and postprocessing the SOAP message, by intercepting it and act-
ing on the SOAP request and response. As Figure 10.7 shows, a handler can be
used on the client side, server side, or both. Handlers can be used to add features
to a service call and are a good means to layer additional functionality over the
core message. They are useful because they provide the ability to introduce

Advanced JAX-RPC 371

security services, business processing, and error handling. They also permit man-
aging the selection of content creation strategies in both service consumers and
service implementations without changing client or server code.

All handler implementations must implement the javax.xml.rpc.han-
dler.Handler interface shown below:

public interface Handler{
public abstract void init(HandlerInfo handlerinfo);
public abstract boolean handleRequest(MessageContext messagecontext);
public abstract boolean handleResponse(MessageContext messagecontext);
public abstract boolean handleFault(MessageContext messagecontext);
public abstract void destroy();
public abstract QName[] getHeaders();

}

The handler is passed an instance of a MessageContext, which can be used to
access the underlying Soap with Attachments API for Java (SAAJ) javax.xml
.soap.SOAPMessage that represents the actual message. It can also be used to pass
objects between handlers in the chain, to share state information specific to a re-
quest. Note that a handler is always stateless itself and should not hold any mes-
sage-specific state in an instance variable. The lifecycle of a handler instance is
quite similar to that of a servlet:

372 Chapter 10 JAX-RPC

Client
runtime

EndpointClient
Service

Implementation

Marshall
Java

Unmarshall
XML to Java

Marshall
toJava XML

Process HandlerChain

Handler1.handleRequest()

Handler2.handleRequest()

Process HandlerChain

Handler1.handleRequest()

Handler2.handleRequest()

Process HandlerChain

Handler2.handleResponse()

Handler1.handleResponse()

Process HandlerChain

Handler2.handleResponse()

Handler1.handleResponse()

SOAP SOAP

Unmarshall
XML to Java

Figure 10.7
Handler

architecture

1. The runtime initializes the handler by calling the init() method and passing
configuration information to the instance via the HandlerInfo object. This is
a useful place to obtain references to reusable resources.

2. Depending on the stage of request processing, the handleRequest(), handle-
Response(), or handleFault() method is invoked.

3. The runtime can call these methods multiple times from different threads
that handle different requests and can even pool handler instances for opti-
mization.

4. When the runtime is done or is under resource constraints, it will invoke the
destroy() method, which is a good place to release the resources obtained in
the init() method.

Multiple handlers can be combined together an ordered group called a han-
dler chain. Chained handlers are invoked in the order in which they are config-
ured. When a handler completes its processing, it passes the result to the next
handler in the chain. Chaining and managing communication between handlers
in a chain is done by the runtime. Developers write handlers as individual units
that do not need to be aware of other handlers and are thus highly reusable.

The order in which handlers are deployed is important. For example, if a
client sends an encrypted request in a compressed format, the handlers on the
server must first decompress and then decrypt the input. Like individual han-
dlers, chains can be defined on the client, the server, or both. The steps below de-
scribe how execution occurs in a chain (see Figure 10.7):

1. The handleRequest() methods of the handlers in the chain on the client are
all executed, in the order specified. Any of these handleRequest() methods
might change the SOAP message request.

2. When the handleRequest() method of the last handler in the chain has been
executed on the client side, the runtime dispatches the request to the server.

3. When the endpoint receives the request, it invokes the handleRequest()
methods of the handlers in the chain on the server, in the order specified in
the chain.

4 When all the handlers are done processing the request, the endpoint dele-
gates the invocation to the service implementation via the tie.

5. When the service has completed its work, the runtime invokes the handle-
Response() methods of the handlers in the chain on the server, in reverse

Advanced JAX-RPC 373

order. The last handler to process the request will be the first to process the
response. Any of these handleResponse() methods might change the SOAP
message response.

6. When the client receives the response from the server, the handleResponse()
methods of the chain on the client are executed in the same reverse manner.
Any handler can change the SOAP message.

7. The response is then returned to the client application that invoked the Web
service.

In a chain, if any of the handle methods in the handler return true, the next
handler in the chain is invoked.

Request processing can be terminated by returning false. As Figure 10.8
shows, developers can throw a SOAPFaultException to indicate a SOAP fault or a
JAX-RPCException and trigger the handleFault callbacks in the handler. Table
10.8 describes the main classes and interfaces relevant to handlers.

Handler Advantages

Handlers and handler chains offer a valuable tool to architects. We list below
some best practices and usage scenarios for handlers:

• Introducing security. A handler can be used to encrypt and decrypt the
header or body data, using symmetric or asymmetric ciphering techniques.
Clients use a handler to encrypt data before sending the SOAP request. A
handler on the server decrypts the data before invoking business compo-
nents, such as EJBs, and encrypts the outgoing response after business pro-
cessing occurs.

374 Chapter 10 JAX-RPC

Handler1.handleRequest()

Handler2.handleFault()

Handler1.handleFault()

Handler2.handleRequest()
Exception thrownClient

or
server

Figure 10.8
Fault handling

in handlers

• Processing metadata. A handler can be used to access and manipulate the
SOAP header containing metadata or context information about the service
invocation or service consumer.

• Validating data. Intercepting the request before any processing occurs on the
data and validating the request or attachment in the request against a schema,
especially for a handling compound messages with XML attachments is best
done using handlers.

• Handling data content. Handlers can be used to process SOAP attachments—
for example, plain text, XML, JPEG images, and octet streams.

• Optimizing and improving performance. Handlers can be used to intro-
duce optimizations in service processing by introducing features such as

o Data caching or result caching for frequently accessed results

o Prefetching of additional data that may be required during request processing

Advanced JAX-RPC 375

Table 10.8 Handler-Specific API in JAX-RPC

javax.xml.rpc.handler.Handler Must be implemented by a handler class.

javax.xml.rpc.handler.HandlerInfo Contains information about the handler—in par-
ticular, the initialization parameters.

javax.xml.rpc.handler.MessageContext Abstracts the message processed by the handler
and contains getProperty(String) and setProperty
(String,Object) methods that can be used to share
state between handlers in a handler chain. This is
analogous to the pageContext in JSPs or a
ServletContext in servlets.

javax.xml.rpc.handler.soap.SOAP
MessageContext

Extends the MessageContext and provides access
to the actual SOAP message. It also contains the
getRoles() method, which returns the SOAP actor
roles associated with the HandlerChain.

javax.xml.soap.SOAPMessage Object that contains the actual request or response
SOAP message, including its header, body, and
attachment.

javax.xml.rpc.handler.HandlerChain Implemented by the JAX-RPC implementation to
represent a chain. A HandlerChain can have SOAP
actor roles associated with it.

o Initializing, preparing, and caching resources that may otherwise intro-
duce latencies

• Implementing intermediaries. Chapter 4 introduced the concepts of actors,
intermediaries, and roles. To recall, a SOAP message may pass though interme-
diaries capable of processing and forwarding the request. The SOAP message
may contain header information intended only for an intermediary’s con-
sumption. The targeted intermediary will process that particular header and
ensure that it is not passed along.The SOAP actor attribute is a URI that indi-
cates whom the header intended for. The actor next corresponds to a URI of
http://schemas.xmlsoap.org/soap/actor/next and indicates that the header
element is intended for the first SOAP application that processes the message.

Handlers offer a good mechanism to implement SOAP intermediaries and
process headers. When the handler chain executes, the runtime will identify
the SOAP actor roles for which the chain is configured and ensure that the han-
dlers are passed the header blocks they need. If the processing was unsuccess-
ful or any of the mandatory headers is not present, a corresponding SOAP
fault (e.g., a SOAP MustUnderstand fault) is generated and propagated back to
the client.

Configuring Handlers

Message handlers can be configured in two ways: programmatically, using JAX-
RPC API, or declaratively, using a JAX-RPC runtime-provided tool or deploy-
ment descriptor. Client-side handlers can be configured either way, but server-
side handlers can be be configured only declaratively. The fragment below shows
the relevant extract for xrpcc in the reference implementation given in Listing
10.3. The runAt property can be client or server, indicating where the handler is
to be deployed, and the property fields indicate arbitrary properties (e.g., config-
uration information) required by the handlers. Multiple handlers can be regis-
tered per interface or per service.

<handlerChains>
<chain runAt=“client|serverw” roles=““>

<handler className=““ headers=““>
<property name=““ value=““/>

</handler>
</chain>

</handlerChains>

376 Chapter 10 JAX-RPC

Programmatic registration of handlers on the client can be done in code such
as the following:

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService (...);
HandlerRegistry registry = service.getHandlerRegistry();
// pass the namespace and portname to get the handler chain object
List chain = registry.getHandlerChain(new QName(...));
Map config =... //configuration poperties
Qname headers[]=... //headers
HandlerInfo info = new HandlerInfo(MyHandler.class, config,headers);
chain.add(info);

Let us now look at an example of using handlers. Flute Bank has exposed a ser-
vice that allows third-party vendors to send sensitive information about custom-
ers as a part of a larger business transaction. The code below shows how a handler
can be implemented on both the client and server sides to first compress that in-
formation and then encrypt it, using password-based symmetric ciphering
(PBEWithMD5AndDES).

As Figure 10.9 shows, the client-side handler intercepts the request, com-
presses the outgoing data, and encrypts it, using a symmetric cipher. (Listing
10.13 uses JCE, the Java Cryptography Extension API bundled with JDK 1.4.)
Once this is done, it places the data back in the SOAP message and sends the re-
quest on its way to the service.

Listing 10.13 Client-side handler

public class SecureZipClientHandler implements Handler {
private static final byte salt[] = new byte[8];
private static final int iterations =1;
private final static String algorithm = “PBEWithMD5AndDES”;
private static SecretKeyFactory skf;
private static PBEParameterSpec aps;
private final static char[] password = “1eallysecurepassword”.toCharArray();

public void init(HandlerInfo hi) {
try {

// Initialize JCE and the key factory
Security.addProvider(new com.sun.crypto.provider.SunJCE());

Advanced JAX-RPC 377

skf = SecretKeyFactory.getInstance(algorithm);
aps = new PBEParameterSpec(salt,iterations);

} catch (Exception e) {
System.out.println(e);

}
}

/**
The handlerequest method that intercepts the outgoing request from the client
*/

public boolean handleRequest(MessageContext context) {
try {

SOAPMessageContext smc = (SOAPMessageContext)context;
SOAPMessage msg = smc.getMessage();
SOAPPart sp = msg.getSOAPPart();
SOAPEnvelope se = sp.getEnvelope();

// next step based on the processing model for this handler
SOAPBody body = se.getBody();
Iterator it = body.getChildElements();
SOAPElement opElem = (SOAPElement)it.next();
it = opElem.getChildElements();
SOAPElement pin = (SOAPElement)it.next();
it = pin.getChildElements();
Text textNode = (Text)it.next();
textNode.detachNode();
String encContent = textNode.getValue();

// Use a utility class to decode the Base64 encoded binary SOAP data
byte[] contentBytes = Base64.decode(encContent);
// zip the content
ByteArrayOutputStream baos = new ByteArrayOutputStream();
GZIPOutputStream zos = new GZIPOutputStream(baos);
zos.write(contentBytes);
zos.flush();
zos.finish();
zos.close();

// Encrypt the content
byte[] zippedbytes = encrypt(baos.toByteArray());

// Use a utility class to encode the bytes back to the binary SOAP data

378 Chapter 10 JAX-RPC

String zippedContent = Base64.encode(zippedbytes);
System.out.println(“Client handler done with encryption and compression”);

// Add the content to the outgoing message
pin.addTextNode(zippedContent);
return true;

}
catch (Exception e) {

System.out.println(e);
return false;

}
}

private static byte[] encrypt(byte[] clear) throws Exception {
byte[] ciphertext = null;
PBEKeySpec ks = new PBEKeySpec(password);
SecretKey key = skf.generateSecret(ks);
Cipher desCipher = Cipher.getInstance(algorithm);
desCipher.init(Cipher.ENCRYPT_MODE, key,aps);
ciphertext = desCipher.doFinal(clear);
return ciphertext;

}
/* The handleResponse method does nothing on the response returned from the
* server. Only outgoing data needs to be encrypted and compressed.
*/

public boolean handleResponse(MessageContext context) {
return true;

}

// Other Handler methods with empty implementations not shown
}

The handler on the server side intercepts the request from the endpoint, de-
crypts the data using the same password as the client, and decompresses the data.
It then places the data back on the SOAP request and sends it on the way to the
service implementation or tie, as Listing 10.14 shows.

Advanced JAX-RPC 379

Client side handler
1. Zip content
2. Encrypt zip

Server side handler
1. Decrypt data

2. Unzip decrypted data
Client Server

Figure 10.9
Handler
example

Listing 10.14 Server-side handler

public class SecureZipServerHandler implements Handler {
// member variables are identical to client handler shown previously

public void init(HandlerInfo hi) {
// Initialize JCE here identically to the client handler shown previously

}

public boolean handleRequest(MessageContext context) {
try {

SOAPMessageContext smc = (SOAPMessageContext)context;
SOAPMessage msg = smc.getMessage();
SOAPPart sp = msg.getSOAPPart();
SOAPEnvelope se = sp.getEnvelope();

// next step based on the processing model for this handler
SOAPBody body = se.getBody();
Iterator it = body.getChildElements();
SOAPElement op = (SOAPElement)it.next();
SOAPElement param = (SOAPElement)op.getChildElements().next();
Text textNode = (Text)param.getChildElements().next();
String zippedenccontent = textNode.getValue();
System.out.println(zippedenccontent);
textNode.detachNode();

// Use a utility class to decode the Base64 encoded binary SOAP data
byte[] rawbytes = Base64.decode(zippedenccontent);

// First decrypt the data using ciphers
rawbytes = decrypt(rawbytes);

// unzip the data
ByteArrayInputStream bais = new ByteArrayInputStream(rawbytes);
GZIPInputStream zis = new GZIPInputStream(bais);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int c = -1;
while ((c = zis.read())!= -1) {

baos.write(c);
}

380 Chapter 10 JAX-RPC

baos.flush();
byte[] contentBytes = baos.toByteArray();
System.out.println(“Server handler done with decryption and

decompression”);
// Use a utility class to encode bytes to Base64 binary SOAP data

String encContent = Base64.encode(contentBytes);
param.addTextNode(encContent);
return true;

}
catch (Exception e) {

System.out.println(e);
return false;

}
}

// method to decrypt bytes
private static byte[] decrypt(byte[] input) throws Exception {

byte[] cleartext1 = null;
PBEKeySpec ks = new PBEKeySpec(password);
SecretKey key = skf.generateSecret(ks);
Cipher desCipher = Cipher.getInstance(algorithm);
desCipher.init(Cipher.DECRYPT_MODE, key,aps);
cleartext1 = desCipher.doFinal(input);
return cleartext1;

}

// The server does not need to process the outgoing response to the client

public boolean handleResponse(MessageContext context) {
return true;

}

// Other Handler methods with empty implementations not shown
}

The service implementation in Listing 10.15 is no different from any of the
previous examples and requires no additional code. Note that in this case, the
service implementation is not aware of any of the changes (compression, encryp-
tion, decryption, and decompression) applied to the SOAP message between the
time the client initiated the request and the time it was processed.

Advanced JAX-RPC 381

Listing 10.15 Service implementation

public interface Fileservice extends Remote{
public String acceptContent(byte[] parameter_in) throws RemoteException;

}

public class FileserviceImpl implements Fileservice {

public String acceptContent(byte[] input) throws RemoteException {
try {

BufferedOutputStream fos= new BufferedOutputStream
(new FileOutputStream(“Myfile.doc”));

fos.write(input,0,input.length);
fos.flush();
fos.close();
}catch(Exception e){

System.out.println(e);
}

return “Data sucessfully processed and timestamped as:”+ new Date();
}

The client code also does not require any modification and remains the same
as any of the previous examples:

// instantiate the service.
Contentservice_Impl service = new Contentservice_Impl();
Fileservice_Stub stub =(Fileservice_Stub) service.getFileservicePort();
stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,args[0]);

// get the content of file to be sent
byte[] rawbytes = readFile(args[1]);
// send the content
String timestamp= stub.acceptContent(rawbytes);

What is different from the previous examples is the configuration file shown
in Listing 10.16 for xrpcc, where the handlers are declaratively specified.

Listing 10.16 xrpcc configuration for handlers

<?xml version=“1.0” encoding=“UTF-8”?>
<configuration xmlns=“http://java.sun.com/xml/ns/jax-rpc/ri/config”>

<service name=“Contentservice” targetNamespace=“http://www.flutebank.com/xml”
typeNamespace=http://www.flutebank.com/xml

382 Chapter 10 JAX-RPC

packageName=“com.flutebank.encryptedposervice”>
<interface name=“com.flutebank.encryptedposervice.Fileservice”

servantName=“com.flutebank.encryptedposervice.FileserviceImpl”/>
<handlerChains>

<chain runAt=“client”>
<handler className=“com.flutebank.encryptedposervice.SecureZipClientHandler”>

</handler>
</chain>

<chain runAt=“server”>
<handler className=“com.flutebank.encryptedposervice.SecureZipServerHandler”>
</handler>

</chain>
</handlerChains>

</service>
</configuration>

Handler Disadvantages

Though handlers offer a nice way of pre- and postprocessing the SOAP message,
certain issues must be kept in mind:

• If the handler code introduces propietary modifications in the outgoing
SOAP message, the service may no longer be interoperable with other plat-
forms. For example, just based on WSDL, the caller of the above service will
never be able to deduce that the server endpoint expects the data in a particu-
lar compressed and encrypted format.

• Introducing handlers that alter the response message at an endpoint may
break existing clients written for the service interface.

• Introducing another layer of pre- and postprocessing of the SOAP message
may degrade performance by increasing reponse times.

Asynchronous Invocation with Attachments and Handlers

Earlier in this chapter, we mentioned the use of attachements for creating com-
pound messages. Let us look at a possible realization, shown in Figure 10.10.

A business document, such as a purchase order or invoice in XML format, is
sent as an attachment to the SOAP message in the request.The service definition
exposes a method similar to

public String submitInvoice(Source invoice) throws RemoteException;

Advanced JAX-RPC 383

which receives the message and in turn maps the attachment as per the mapping
in Table 10.7. An XML attachment (text/xmlMIME type) automatically maps to
the javax.xml.transform.Source. The service could then process that XML rep-
resentation in many ways. For example, it could parsed and transformed it, place
it on a JMS queue, or even pass it to a JAXM provider, as Figure 10.10 shows.
Additionally, handlers could intercept the message and perform a hard valida-
tion against a schema for the document, if necessary.

The difference between this asynchronous model and the one-way RPC is es-
sentially that the client receives a response from the endpoint, because of its
asynchronous persistence framework using JMS. If, as a result of HTTP issues,
the client could not receive that response, it is the client’s prerogative to retry the
invocation or query the service. The latter would require introspection into the in-
tegration tier (e.g., JMS queue). The service has no way to communicate back to
the HTTP client with a callback unless the client realizes a similar service on its side.
This realization, though useful in most scenarios, is pseudo-asynchronous. Look at
asynchronous messaging with JAXM and messaging profiles in Chapter 11.

Holder Classes

CORBA developers would already be familiar with the concept of in, out, and
inout parameters and Holder classes. Like IDL, operations in WSDL may take
out or inout parameters as well as in parameters. To understand the in, out, and
inout concepts, consider the following signature:

public Something myMethod(Somearg somearg) {
// code
}

384 Chapter 10 JAX-RPC

JAXM
provider

JMS

SOAP/HTTP

Generated tie

Service Implementation

Servlet container WEB TIER

Servlet
Endpoint

MDB or
JMS client

DB

Figure 10.10
Using XML

attachments
with JAX-RPC

for asynchron-
ous invocation

In Java, the somearg is the argument the method receives, and the Something is
what the method returns after doing its work. However if clients pass the somearg
as an object and expect the method to change that value, it is an inout parameter.
For example, consider the following code:

Somearg param= Somearg(...).;
Something val= myMethod(param);
if (param.xxx){

//
}

The above coding practice is discouraged in Java but is used in other lan-
guages, such as C and C++. Java passes parameters only by value and has no con-
cept of out or inout parameters; therefore, in JAX-RPC these are mapped Holder
classes. In place of the out parameter, a Java method will take an instance of the
Holder class of the corresponding type. The result assigned to the out or inout pa-
rameter is assigned to the value field of the Holder class. >

A service operation signature written in Java will typically return a single
value: a primitive or a JavaBean. If there is a need for the service operation to re-
turn multiple values, the data type of the return value can be a complex type,
such as an object with multiple parts (e.g. a Portfolio object with many Position
objects) or an array. The third alternative is to specify that one or more of the pa-
rameters of the Web service operation be out or inout parameters.

For example, assume a Web service operation contains one out parameter,
and the operation is implemented with a Java method. The method sets the value
of the out parameter and sends this value back the client application that invoked
it. The client application can then access the value of this out parameter as if it
were a return value. The code below illustrates this with a method whose second
parameter is an inout parameter:

Advanced JAX-RPC 385

In WSDL, if apartname appears

• In both the input and output message, it is an inoutparameter

• In only the input message, it is an inparameter

• In only the output message, it is an outparameter

out parameters are undefined when the operation is invoked but defined
when the operation completes; inout parameters are defined when in-
voked and when completed.

>

public float payBalance(String userid,javax.xml.rpc.holders.IntHolder balance) {
System.out.println (“The input value is: “ + balance.value);
// do some work here
balance.value = 90; // the new value of the out parameter

}

When the client invokes the above method with two parameters, a String and
an integer, it will be returned two values: a float and an integer. If at invocation
the balance parameter value was 1000 when the method completed, the value of
the second parameter is now 90 and will also be returned to the client.

IntHolder inoutbalance = new IntHolder(1000);
System.out.println(“Holder value is “ + inoutbalance.value);
float interest= service.payBalance(“johnmalkovich”,inoutbalance);
System.out.println(“Interest charged on credit card is “ + interest);
System.out.println(“Remaining balance,holder value is “ + inoutbalance.value);

The above client code invoking the above service implementation will pro-
duce the following output:

Holder value is 1000
Interest charged on credit card is 9.0
Remaining balance, holder value is 90

Holder classes for out and inout parameters must implement the javax.xml
.rpc.holders.Holder interface. In the service implementation, use the value
field to first access the input value of an inout parameter and then set the value of
out and inout parameters.

If the out or inout parameter is a standard data type, JAX-RPC provides a set
of holder classes in the javax.xml.rpc.holders package, listed in Table 10.9.

If the data type of the parameter is not provided, developers must create their
own implementation of the javax.xml.rpc.holders.Holder interface to handle
out and inout parameters, based on the following guidelines:

• Name the implementation class XXXHolder, where XXX is the name of the com-
plex type. For example, if the complex type is called Portfolio, the imple-
mentation class is called PortfolioHolder.

• Create a public field called value, whose data type is the same as that of the
parameter.

386 Chapter 10 JAX-RPC

• Create a default constructor that initializes the value field to a default.

• Create a constructor that sets the value field to the passed parameter.

The following example shows the outline of a custom PortfolioHolder im-
plementation class:

package com.flutebank.brokerage;
public final class PortfolioHolder implements javax.xml.rpc.holders.Holder {

public Portfolio value;
public PortfolioHolder() {
}

// set the value variable to a default value
}
public PortfolioHolder(Portfolio value) {

// set the value variable to the passed in value
}

}

Advanced JAX-RPC 387

Table 10.9 JAX-RPC–Defined Holder Classes

Built-in holder class Java data type it holds

javax.xml.rpc.holders.BooleanHolder boolean

javax.xml.rpc.holders.ByteHolder Byte

javax.xml.rpc.holders.ShortHolder short

javax.xml.rpc.holders.IntHolder Int

javax.xml.rpc.holders.LongHolder Long

javax.xml.rpc.holders.FloatHolder float

javax.xml.rpc.holders.DoubleHolder double

javax.xml.rpc.holders.BigDecimalHolder Java.math.BigDecimal

javax.xml.rpc.holders.BigIntegerHolder Java.math.BigInteger

javax.xml.rpc.holders.ByteArrayHolder Byte[]

javax.xml.rpc.holders.CalendarHolder Java.util.Calendar

javax.xml.rpc.holders.QnameHolder javax.xml.namespace.QName

javax.xml.rpc.holders.StringHolder Java.lang.String

Using Custom Data Types

Besides the data types supported by JAX-RPC discussed earlier, it may be neces-
sary to pass data types that do not satisfy the requirements. For example,
BillPay.java demonstrated earlier could define the listScheduledPayments() to
return a java.util.Vector of PaymentDetail objects, instead of the Payment-
Detail[]it did return. Note that a Vector is not a supported data type, as per the
mappings in Table 10.2.

JAX-RPC supports the concept of pluggable serializers and deserializers for
such custom data types. A serializer marshals a Java object to an XML representa-
tion, and a deserializer unmarshals an XML representation to a Java object. As
Figure 10.11 shows, serialization and deserialization are symmetrical functions
and both use type mapping to map the Java and XML data types.

Developers can specify the serializer and deserializer to use for a service on
the server using the deployment tool. xrpcc has the typemapping element for this
purpose. This allows the endpoint to unmarshal the XML to the corresponding
Java type, and vice versa. For example, a com.fluebank.Vector may be serialized
as

<avector xmlns:tns=“http://www.flutebank.com” xsi:type=“ tns:Vector”>
<item xsi:type=“xsd:string”>some value here</item>
<item xsi:type=“xsd:anyType” xsi:null=“true”/>
</avector >

If the server know that this namespace and type correspond to a com.flute-
bank.Vector, it can invoke the corresponding deserializer and create and pass the

388 Chapter 10 JAX-RPC

Serializer

SerializerDeserializer

Java
type

Java
typeXML XML

XML XML
Java
type

Java
type

Java
Client

JAX-RPC
Service

Any other
client

Deserializer

TypeMapping
tns:mytype=serializer.class, deserializer.class

Client-specific mechanism
(based on WSDL)

TypeMapping
tns:mytype=serializer.class, deserializer.class

Figure 10.11
Serializers and

deserializers

corresponding com.flutebank.Vector object to the service implementation.
When the service client is written, the developers will need to write a similar
serializer and deserializer on the client-side runtime or take a shortcut and use the
same classes from the server, if the same vendor runtime is used. If it is not used,
the runtime will not know what to do when it comes across this custom data type
and will throw a serialization exception.

JAX-RPC Pluggability Mechanism

The JAX-RPC part of the API, the type system relevant to development of
pluggable serializers and deserializers, is simple and is shown in Figure 10.12 and
Table 10.10.

The base serializer and deserializer interfaces are implemented by a runtime-
specific class or extended by a runtime-specific interface. Developers use this to
write their serializers and deserializers for that particular runtime. However, a
larger issue is at hand. A closer look at the Serializer, DeSerializer, Serializa-
tionContext, and DeSerializationContext interfaces reveals no methods relate
to serialization or deserialization and that these are just marker interfaces. What

Advanced JAX-RPC 389

interface
TypeMappingRegistry

interface
SerializerFactory

interface
DeserializerFactory

VendorsBaseSerializer VendorsBaseDeserializerMySerializer MyDeserializer

interface
TypeMapping

interface
Serializer

interface
Deserializer

creates

contains

registered registered

creates

1..* 1..*

Figure 10.12
The type map-

ping system

this means is that serializers and deserializers are not guaranteed to be portable
across implementations, because there is no contract with the runtime. They are
specific to and pluggable only in a particular implementation. For example, if a
developer writes a serializer and deserializer for the JAX-RPC RI, these classes are
not guaranteed to be usable in another vendor’s JAX-RPC implementation.

The API is structured like this for a very good reason. Different runtimes may
(and do) use different XML parsing techniques (e.g., DOM parser, SAX parser,
streaming pull). Porting a serializer written for SAX parsing (i.e., one that expects
a SAX stream) into a runtime that uses a different parsing mechanism cannot be
done completely transparently. The next version of the JAX-RPC specification is
supposed to address transparent pluggability further.

Most vendors will provide several built-in serializers and deserializers, to help
developers as utility classes for their runtimes. The code will never be aware of the
need for a serializer/deserializer for that particular custom data type, as long the
code is deployed in that vendor’s runtime. (If you move it to another, you may
need to write the serializer and deserializer yourself.) For example, JAX-RPC 1.0
RI supports a subset of Java collection classes and provides corresponding
serializers and deserializers as utilities for developers (Table 10.11).

So if the listScheduledPayments() method returned a java.util.ArrayList,
even though it is not a data type for which a standard Java-XML mapping exists,
the runtime will generate the corresponding SOAP message and response, based
on internal type mapping and custom serializers and deserializers.

390 Chapter 10 JAX-RPC

Table 10.10 The Type Mapping System API

TypeMappingRegistry Defines an internal registry that holds a mapping
of encoding styles and the corresponding
TypeMapping.

TypeMapping Maintains a set of tuples of the type {Java type,

SerializerFactory, DeserializerFactory, XML
type}.

Serializer The base interface for serializers to implement.

DeSerializer The base interface for deserializers to implement.

SerializationContext Passed to the serializer as context information.

DeSerializationContext Passed to the deserializer as context information.

Configuring Custom Serializers and Deserializers

Like message handlers, pluggable serializers and deserializers can be configured
in two ways: programmatically, using JAX-RPC API, or declaratively, using a
JAX-RPC runtime-provided tool or deployment descriptor. Client-side serializers
and deserializers can be configured in either way, but server-side handlers can be
be configured only declaratively. The fragment below shows the relevant extract
for xrpcc in the reference implementation given in Listing 10.3.

<typeMappingRegistry>
<import>

<schema namespace=““ location=““/>
</import>
<typeMapping encodingStyle=““>
<entry schemaType=““ javaType=““ serializerFactory=““ deserializerFactory=““/>
</typeMapping>
<additionalTypes>

Advanced JAX-RPC 391

Table 10.11 Deserializers and Serializers Provided
as Utilities by the Reference Implementation

java.util.Collection

java.util.List

java.util.Set

java.util.Vector

java.util.Stack

java.util.LinkedList

java.util.ArrayList

java.util.HashSet

Java.util.TreeSet

Java.util.Map

Java.util.HashMap

Java.util.TreeMap

Java.util.Hashtable

java.util.Properties

<class name=““/>
</additionalTypes>

</typeMappingRegistry>

Programmatic registration on the client can be done in code similar to the fol-
lowing:

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService (...);
TypeMappingRegistry registry = service. getTypeMappingRegistry();

TypeMappingRegistry maprping = registry.createTypeMapping()
// or registry.getDefaultTypeMapping();

SerializerFactory sfactory= // some runtime specific code

DeserializerFactory dfactory= // some runtime specific code

// register the custom handlers passing the Java class, the namespace, the serializer
// factory to use and the deserializer factory to use

mapping.register(myclass, qname, sfactory, dfactory)
registry.register(encodingStyleURI,mapping)

JAX-RPC and Security

Security has multiple aspects; Chapter 15 covers them in detail. From a JAX-RPC
perspective, there are two major points:

• Securing the transport layer. JAX-RPC does not explicitly require runtimes
to support Hypertext Transfer Protocol Secure (HTTPS). However most
servlet containers where the HTTP endpoints are deployed potentially sup-
port HTTPS (e.g., Tomcat). Just switching on HTTPS on the server will be
enough for the service deployment. To enable SSL support on the client side,
however, JSSE must be used to change the default HTTP handlers.

• Securing users. JAX-RPC requires support for basic HTTP authentication.
The username and password on the client side can be passed via the javax
.xml.rpc.security.auth.username and javax.xml.rpc.security.auth.user-
name.password properties discussed in the Clients Using Stubs section earlier

392 Chapter 10 JAX-RPC

in this chapter. If at runtime the username or password is not found or is in-
correct, the server code will send the client an HTTP code 401 along with the
basic HTTP authentication header (WWW-Authenticate). In the service imple-
mentation, the service can access the java.security.Principal via the
getUserPrincipal() in the ServletEndpointContext, as shown earlier.

> JAX-RPC Interoperability

In the context of Web services, interoperability can be summarized as meaning
that the functional characteristics of the service should remain immutable across
differing application platforms, programming languages, hardware, operating
systems, and application data models. By definition, Web services should be
interoperable, and the service consumer should not be tied to the service imple-
mentation.

However there are bound to be issues when applications use disparate SOAP
libraries that generate and manipulate the underlying SOAP message, disparate
programming languages, and disparate hardware-software stacks. The following
are common causes for interoperability problems between these libraries or
toolkits:

• Implementations conform only to a subset of the full SOAP or other XML
specifications.

• Implementations depend on optional aspects of the SOAP specifications.
For example:

o Sending type information for encoded parameters is optional; however, if
an implementation assumes this will be present in messages it receives, it
may not interoperate with others that do not send this information.

o There is no differentiation between SOAPAction values of ““ and null in the
specifications, but some implementations support both, whereas others
do not quote this value at all for non-null SOAPActions.

• Implementations interpret ambiguous definitions of the SOAP specification
differently. For example:

o It is not clear how a service should represent an RPC response with a void
return and no out parameters. It could be an empty SOAP envelope, an
empty SOAP response element, or even an HTTP 204 (“No Response”)
code.

JAX-RPC Interoperability 393

o A null value can be represented either by not including that XML element
or by an element with the xsi:nil=“true”. >

In general, architects should keep the following in mind while designing Web
services:

1. Avoid propeietary extensions. Avoid building dependencies into the appli-
cation that use any vendor-specific extension to the specifications JAX-RPC
depends on (SOAP, WSDL, XML schemas, and HTTP).

2. Test interoperability. Never assume things will work as they should. It is es-
sential to test interoperability of the service implementation across multiple
consumers, especially if the consumers are outside the boundaries of the
organization. Public interoperability tests are also available from the Web
Services Interoperability organization (www.ws-i.org) and White Mesa (www
.whitemesa.com). >>

3. Analyze disparate data models. When a service is used to integrate applica-
tions that have disparate data models, the models may need to be resolved by
creating an intermediate model. For example, flutebank.com integrates with
brokerage.com to provide customers the ability to view their accounts simul-
taneously online when in any of the portals. The data model for an account as
represented in flutebank.com may be quite different from an account in

394 Chapter 10 JAX-RPC

The only real mechanism for ensuring interoperability is to verify compli-
ance with standards:

• HTTP 1.1 for the transport protocol

• XML Schema to describe your data

• WSDL 1.1 to describe your Web service

• SOAP 1.1 for the message format

The JAX-RPC API and SAAJ provide a standard interface for Java developers
leveraging these same standards.

Testing! To promote SOAP-level interoperability and address issues be-
tween implementations, the SOAPBuilders community—with members as
diverse as IBM, Microsoft, Sun Microsystems, Apache, and even individ-
uals—has come together to develop an interoperability test suite specifi-
cation and regularly conduct testing of their endpoints against this speci-
fication. See http://soapinterop.java.sun.com/soapbuilders/index.shtml and
www.xmethods.net/ilab.

>

>>

brokerage.com. In this scenario, the architects will need to reconcile the mod-
els by creating an XML schema acceptable to both parties.

4. Analyze disparate data types. Data types passed as arguments and return
types from the service invocation can impact interoperability.

• JAX-RPC–defined data types. The data types and mappings defined in
the specifications are available in all JAX-RPC runtimes. Because they are
subsets of the XML schema specifications and map directly to the data
types in the SOAP encoding, they are completely interoperable.

• Custom data types. If the data type is custom defined (e.g., a java.util
.HashMap of com.flutebank.accounts.Account objects), an XML schema
must be created to describe the representation of the data and the custom
serializer and deserializer for that data on the server. Such a schema may
not be completely interoperable. In addition, the JAX-RPC client would
need to write serializers and deserializers to invoke the service. We looked
at handling custom data types earlier in this chapter. In summary, custom
data types may not be completely interoperable across all service consumers.

5. Avoid custom data types. Custom data types that force the use of custom
serializers and deserializers can potentially cause interoperability issues with
other implementations. For example, a List may be represented differently
by implementations from vendors A and B. If vendor A’s client runtime is
used to invoke a service deployed in vendor B’s runtime, serialization errors
may occur, because each implementation uses its own XML mapping of that
data type. If the mapping is not available, the corresponding serailizers and
deserializers will need to be written.

For collection classes in particular, the SOAPBuilders community plans to
pursue interoperability testing across vendor runtime implementations.

6. Customize data, protocols, and encoding schemes. Architects should be
wary of any code that customizes the messages. A good example is the Com-
press-Secure handlers example in Listing 10.13. The endpoint of that service
cannot be invoked by clients that are not aware of the compression and secu-
rity algorithm used and understood by the service. From a service perspec-
tive, there is no standard way to communicate this information (e.g., it can-
not be specified in WSDL).

7. Promote portability of client code between JAX-RPC implementations.
J2EE developers would be familiar with the concept of writing an EJB and de-
ploying it transparently in a J2EE server. The EJB client can be written with
complete transparency and used in any J2SE environment by simply altering
configuration properties. This portability of client code does not translate

JAX-RPC Interoperability 395

identically in the JAX-RPC environment, especially when using custom data
types. A JAX-RPC client is not guaranteed to be portable if it uses anything
beyond the simple data types. This is tied to the way the serializers and
deserializers are written, as discussed earlier. In other words, if architects
choose vendor A’s implementation of JAX-RPC and write client code that
uses serializers and deserializers to invoke the service, they should not expect
to simply take the client code and use it in vendor B’s runtime. Applications
should be designed to abstract away the specificity, minimizing the changes
needed.

Let us now look at an example of interoperability in action. We will write a
Microsoft C#.NET client to demonstrate how a JAX-RPC Web service can be
consumed from a Microsoft.NET environment. We will use the BillPay service
developed and deployed previously in this chapter. As in most practical service
consumer scenarios, we will invoke a service based on the WSDL describing it.

During service deployment, xrpcc was used to generate the WSDL. This
WSDL file can now be passed to the Microsoft.NET wsdl compiler, to generate
the client-side stubs:

wsdl /l:CS /protocol:SOAP http://127.0.0.1:9090/billpayservice/billpayservice.wsdl

The above generates the C# source file Billpayservice.cs, which contains
the structures and serialization rules based on the schema and bindings defined
in WSDL.

Next, we build a Windows DLL out of the generated proxy code using the C#
compiler, passing it the referenced dlls from the .NET framework:

csc /t:library /r:System.Web.Services.dll /r:System.Xml.dll Billpayservice.cs

The next step is to write a client and invoke the three methods exposed by the
JAX-RPC Web service. Listing 10.17 shows the C# client code for this purpose.

Listing 10.17 C# client for JAX-RPC

BillPay service
using System;
namespace BillpayClient{

/// <summary>
/// This is a simple C# client to invoke the flutebank.com Web service.

396 Chapter 10 JAX-RPC

/// @Author Sameer Tyagi
/// </summary>
class JAX-RPCClient{

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args) {

// Instantiate the stub/proxy
Billpayservice serv = new Billpayservice();

// Set the endpoint URL
if(args.Length ==1)

serv.Url=args[0];
else

serv.Url= “http://127.0.0.1:9090/billpayservice/jaxrpc/BillPay”;

// Invoke the schedule payment method
PaymentConfirmation conf = serv.schedulePayment(DateTime.Today,”my

account at sprint”,190);
Console.WriteLine(“Payment was scheduled “+ conf.confirmationNum);

// Invoke the listSchedulePayment method
PaymentDetail[] detail= serv.listScheduledPayments();

for(int i=0;i< detail.Length;i++){
Console.WriteLine(“Payee name “+ detail[i].payeeName);
Console.WriteLine(“Payee name “+ detail[i].account);
Console.WriteLine(“Payee name “+ detail[i].amt);
Console.WriteLine(“Payee name “+ detail[i].date);

}
// Invoke the getLastPayment method

Double lastpaid= serv.getLastPayment(“my cable tv provider”);
Console.WriteLine(“Last payment was “+ lastpaid);
}

}
}

The C# client code is remarkably similar to the JAX-RPC stub client written
earlier, because of the syntactic and semantic similarities between the two

JAX-RPC Interoperability 397

programming languages. The client code can now be compiled and executed.
The output will be similar to the following:

C:\Dotnetclient>billpayClient
Payment was scheduled 81263767
Payee name Digital Credit Union
Payee name Credit
Payee name 2000
Payee name 8/1/2002 11:27:33 PM
Last payment was 829 >

We have just developed a Web service in Java, deployed it in a JAX-RPC
runtime, and exposed the service with only a WSDL interface. WSDL was used
to develop a client in a completely different language and platform, C# and
.NET, yet produced identical behavior.

> JAX-RPC and J2EE

Three specifications tightly integrate JAX-RPC with J2EE:

• J2EE 1.4 specifications (JSR-151)

• EJB 2.1 specifications (JSR-153)

• Web services for J2EE (JSR-109)

J2EE 1.4 includes JAX-RPC as a required API, which means that all J2EE 1.4
application servers will support JAX-RPC. The EJB 2.1 specifications—part of
J2EE 1.4—also define how an EJB can be exposed as a Web service and how EJBs
can consume a Web service. The Implementing Enterprise Web Services specification
will lay out the deployment and service requirements for portability of client and
server code across containers.

398 Chapter 10 JAX-RPC

The complete C# project and Microsoft .NET runtime distributable can be
found on the CD. Java developers can think of the runtime distributable as
the JRE. It allows developers to execute the compiled code. To build the
source, however, Microsoft .NET Visual Studio is needed.

>

JAX-RPC and JSR 153

EJB 2.1 allows a stateless session bean to be exposed as a Web service, by defining a
new interface type in addition to the home, local, and remote interfaces. It is
called an endpoint interface and is essentially the JAX-RPC service definition. EJB
developers provide the service definition and the EJB class. As Figure 10.13
shows, the container generates the implementation of the endpoint interface.
much as it generates the implementation of the EJBObject during deployment.

The container exposes the EJB through its service endpoint interface and a
WSDL document that clients can use. Once it is deployed, clients use it like any
other JAX-RPC service—that is, they access this stateless session bean using the
JAX-RPC client APIs over an HTTP transport, just like clients covered earlier in
the chapter.

EJBs can look up other Web services with Java Naming and Directory Inter-
face (JNDI), using a logical name called a service reference. It maps to a service-ref
element in the deployment descriptor, obtains a stub instance for a Web service
endpoint, and invokes a method on that endpoint. The J2EE client or EJB can do
this, as Figure 10.14 and Listing 10.18 show.

Listing 10.18 EJB client and deployment descriptor code extract

InitialContext ctx = new InitialContext();
BillPayService service = (BillPayService)ctx.lookup

(“java:comp/env/service/billpayservice”);
BillPay stub=(BillPay)(serviceproxy.getBillPayPort());
PaymentConfirmation conf= stub.schedulePayment(new Date(),

“my account at sprint”,190);

<enterprise-beans>
<session>

<service-endpoint> com.flutebank.billpayservice.BillPay</service-endpoint>
<ejb-class> com.flutebank.billpayservice.BillPayEJB </ejb-class>

<service-ref>
<service-ref-name> service/billpayservice</service-ref-name>
<service-ref-type>com.flutebank.BillPayImpl</service-ref-type>

</service-ref>
</session>
</enterprise-beans>

JAX-RPC and J2EE 399

What Implementation Is Right for Me?

Implementing a JAX-RPC service as an EJB in a J2EE container has four signifi-
cant advantages:

• Integrated support for transactions

• A comprehensive security model

• Integration with existing business logic

• Scalability through the application server (e.g., clustering and failover)

400 Chapter 10 JAX-RPC

C# , VB.NET J#
Microsoft.NET

JAX-RPC
J2EE

SOAP:Light
Perl

Other
Implementation

Any

J2EE container

Stateless EJB

SOAP

SOAP

SOAP

SOAP SOAP

Stub

Figure 10.14
EJB invoking

other Web
services

C# , VB.NET J#
Microsoft.NET

JAX-RPC
J2EE

SOAP:Light
Perl

Other
Implementation

Any

J2EE container

E
nd

po
in

t i
nt

er
fa

ce

Stateless EJB

SOAP

SOAP

SOAP

SOAP SOAP

Figure 10.13
EJB endpoint for

JAX-RPC

If the service was implemented as a class and not deployed in a J2EE con-
tainer, it forgoes the advantage of the ACID (atomic, consistent, isolated, and
durable) characteristics of the Java Transaction API (JTA) transaction. A non-EJB
class in a J2EE container could still leverage a JTA transaction by directly using
the javax.transaction.UserTransaction object though a JNDI lookup. The
stateless EJB with its service endpoint interface, like other EJBs, can propagate
and demarcate transactions in a J2EE container and also use bean-managed
transactions. It can also leverage the role-based security features the J2EE con-
tainer provides. (Note, however, that transaction context propagation is not re-
quired by the current JAX-RPC specifications.)

Using just a servlet endpoint and a Java class(s) (without an EJB) implementa-
tion has the following advantages:

• Generally better performance

• Simplicity in deployment

• No need for a full-blown J2EE application server; any Servlet 2.3–compliant
Web server or container can be used

JAX-RPC and JSR-109

Implementing Enterprise Web Services (JSR-109) defines a complete mechanism
for deploying Web services in a container, using a webservices.xml file for a mod-
ule and a webservicesclient.xml file for the clients. The key elements of the for-
mer are shown below.

<webservices>
<description>A sample file </description>
<webservice-description>

<wsdl-file>billpayservice.wsdl</wsdl-file>
<port-component>

<port-component-name>BillPayerComponent</port-component-name>
<port-qname-namespace>http://www.flutebank.com/xml</port-qname-namespace>
<port-qname-localname>BillPayService</port-qname-localname>
<service-def-interface>com.flutebank.billpayservice.BillPayt

</service-def-interface>
<service-impl-bean>

<!--If the service implementation is an EJB →
<ejb-link >com.flutebank.billpayservice.BillPayEJB </ejb-link>

JAX-RPC and J2EE 401

<!--If the service implementation is a Servlet →
<servlet-link>com.sun.xml.rpc.server.http.JAXRPCServlet</servlet-link>

</service-impl-bean>
</port-component>

</webservice-description>
</webservices>

At the time of writing, all three of these specifications were still in draft form.
They may possibly undergo changes as a part of the Java community process.

> Summary

So, why do you need JAX-RPC? And more important, what value do these APIs
add to architects? Should developers stop writing RMI, RMI-IIOP, and Java-
IDL/CORBA applications and discard code that consumed significant time and
money, just because newer technology is available?

The answer is an obvious no. Those APIs are as integral a part of J2EE specifi-
cations as JAX-RPC is in J2EE 1.4.

JAX-RPC adds value only if you are sure you want to use SOAP, because it al-
lows developers to write distributed and loosely coupled applications using this
technology: distributed because the objects may not be colocated, and loosely
coupled because the model inherently enforces a level of independence between
the implementation and the calling code. As with all software, architects have to
understand the tradeoffs in integration with existing and new applications, per-
formance, bandwidth, and accessibility. However, there are possibly two major
use cases where JAX-RPC API can be exploited.

The RMI Analogy

Just as in RMI developers write a remote interface, the implementation, and use
the rmic compiler to generate the stubs and ties, you could write a service defini-
tion, the service implementation, and use a JAX-RPC tool (e.g., xrpcc) to gener-
ate the relevant JAX-RPC stubs, ties, and the WSDL file. The client could then
use the WDSL file and stubs to invoke the service. This is something architects
can do to expose existing business logic contained in RMI objects or EJBs as Web
services.

402 Chapter 10 JAX-RPC

The CORBA Analogy

J2SE has the idlj compiler that reads an IDL file and generates the Java bindings.
Developers can do something similar with the JAX-RPC tools (e.g., xrpcc) and
consume a WSDL file to generate the client, server, or both sides of the code, to
serve as relevant adaptors for the servant code they write. This is something archi-
tects can do to implement a service that conforms to a given interface or con-
sume an existing Web service on the JAX-RPC or on a completely different plat-
form, such as Microsoft.NET.

This chapter was meant to give you an insight into JAX-RPC, an API that pro-
vides an invaluable standard for developers and architects who want to build
XML-RPC based Web services.

Summary 403

