
{14}Chapter

Transaction Management

The notion of a transaction is fundamental to business systems architectures. A
transaction, simply put, ensures that only agreed-upon, consistent, and accept-
able state changes are made to a system—regardless of system failure or concur-
rent access to the system’s resources.

With the advent of Web service architectures, distributed applications (macro-
services) are being built by assembling existing, smaller services (microservices).
The microservices are usually built with no a priori knowledge of how they may
be combined. The resulting complex architectures introduce new challenges to
existing transaction models. Several new standards are being proposed that spec-
ify how application servers and transaction managers implement new trans-
action models that accommodate the introduced complexities.

The first sections of this chapter introduce the fundamental concepts behind
transactions and explain how transactions are managed within the current Java/
J2EE platforms. Later sections discuss the challenges of using existing trans-
action models for Web services, explain newly proposed models and standards
for Web service transactions, and finally, detail proposed implementations of
these new models on the Java platform.

> Concepts

A transaction may be thought of as an interaction with the system, resulting in a
change to the system state. While the interaction is in the process of changing sys-
tem state, any number of events can interrupt the interaction, leaving the state
change incomplete and the system state in an inconsistent, undesirable form.
Any change to system state within a transaction boundary, therefore, has to en-
sure that the change leaves the system in a stable and consistent state.

A transactional unit of work is one in which the following four fundamental
transactional properties are satisfied: atomicity, consistency, isolation, and dura-
bility (ACID). We will examine each property in detail.

583

Atomicity

It is common to refer to a transaction as a “unit of work.” In describing a trans-
action as a unit of work, we are describing one fundamental property of a trans-
action: that the activities within it must be considered indivisible—that is, atomic.

A Flute Bank customer may interact with Flute’s ATM and transfer money
from a checking account to a savings account. Within the Flute Bank software
system, a transfer transaction involves two actions: debit of the checking account
and credit to the savings account. For the transfer transaction to be successful,
both actions must complete successfully. If either one fails, the transaction fails.
The atomic property of transactions dictates that all individual actions that con-
stitute a transaction must succeed for the transaction to succeed, and, conversely,
that if any individual action fails, the transaction as a whole must fail.

Consistency

A database or other persistent store usually defines referential and entity integrity
rules to ensure that data in the store is consistent. A transaction that changes the
data must ensure that the data remains in a consistent state—that data integrity
rules are not violated, regardless of whether the transaction succeeded or failed.
The data in the store may not be consistent during the duration of the trans-
action, but the inconsistency is invisible to other transactions, and consistency
must be restored when the transaction completes.

Isolation

When multiple transactions are in progress, one transaction may want to read the
same data another transaction has changed but not committed. Until the trans-
action commits, the changes it has made should be treated as transient state,
because the transaction could roll back the change. If other transactions read
intermediate or transient states caused by a transaction in progress, additional
application logic must be executed to handle the effects of some transactions
having read potentially erroneous data. The isolation property of transactions dic-
tates how concurrent transactions that act on the same subset of data behave.
That is, the isolation property determines the degree to which effects of multiple
transactions, acting on the same subset of application state, are isolated from
each other.

At the lowest level of isolation, a transaction may read data that is in the pro-
cess of being changed by another transaction but that has not yet been commit-

584 Chapter 14 Transaction Management

ted. If the first transaction is rolled back, the transaction that read the data would
have read a value that was not committed. This level of isolation—read uncommit-
ted, or “dirty read”—can cause erroneous results but ensures the highest concurrency.

An isolation of read committed ensures that a transaction can read only data
that has been committed. This level of isolation is more restrictive (and conse-
quently provides less concurrency) than a read uncommitted isolation level and
helps avoid the problem associated with the latter level of isolation.

An isolation level of repeatable read signifies that a transaction that read a piece
of data is guaranteed that the data will not be changed by another transaction un-
til the transaction completes. The name “repeatable read” for this level of isola-
tion comes from the fact that a transaction with this isolation level can read the
same data repeatedly and be guaranteed to see the same value.

The most restrictive form of isolation is serializable. This level of isolation
combines the properties of repeatable-read and read-committed isolation levels,
effectively ensuring that transactions that act on the same piece of data are serial-
ized and will not execute concurrently.

Durability

The durability property of transactions refers to the fact that the effect of a trans-
action must endure beyond the life of a transaction and application. That is, state
changes made within a transactional boundary must be persisted onto perma-
nent storage media, such as disks, databases, or file systems. If the application
fails after the transaction has committed, the system should guarantee that the
effects of the transaction will be visible when the application restarts. Trans-
actional resources are also recoverable: should the persisted data be destroyed, re-
covery procedures can be executed to recover the data to a point in time (pro-
vided the necessary administrative tasks were properly executed). Any change
committed by one transaction must be durable until another valid transaction
changes the data. >

Transaction Manager

In a simple Java application that interacts with a database management system
(DBMS), the application can demarcate transaction boundaries using explicit
SQL commits and rollbacks. A more sophisticated application environment,
with multiple transactional resources distributed across a network, requires a
dedicated component to manage the complexity of coordinating transactions to
completion.

Concepts 585

A transaction manager works with applications and application servers to pro-
vide services to control the scope and duration of transactions. A transaction
manager also helps coordinate the completion of global transactions across mul-
tiple transactional resource managers (e.g., database management systems), pro-

586 Chapter 14 Transaction Management

Isolation Levels and Locking

Traditionally, transaction isolation levels are achieved by taking locks on the
data that they access until the transaction completes. There are two pri-
mary modes for taking locks: optimistic and pessimistic. These two modes
are necessitated by the fact that when a transaction accesses data, its in-
tention to change (or not change) the data may not be readily apparent.

Some systems take a pessimistic approach and lock the data so that
other transactions may read but not update the data accessed by the first
transaction until the first transaction completes. Pessimistic locking guar-
antees that the first transaction can always apply a change to the data it
first accessed.

In an optimistic locking mode, the first transaction accesses data but
does not take a lock on it. A second transaction may change the data
while the first transaction is in progress. If the first transaction later de-
cides to change the data it accessed, it has to detect the fact that the data
is now changed and inform the initiator of the fact. In optimistic locking,
therefore, the fact that a transaction accessed data first does not guaran-
tee that it can, at a later stage, update it.

At the most fundamental level, locks can be classified into (in increas-
ingly restrictive order) shared, update, and exclusive locks. A shared lock
signifies that another transaction can take an update or another shared
lock on the same piece of data. Shared locks are used when data is read
(usually in pessimistic locking mode).

An update lock ensures that another transaction can take only a shared
lock on the same data. Update locks are held by transactions that intend
to change data (not just read it).

If a transaction locks a piece of data with an exclusive lock, no other
transaction may take a lock on the data. For example, a transaction with
an isolation level of read uncommitted does not result in any locks on the
data read by the transaction, and a transaction with repeatable read isola-
tion can take only a share lock on data it has read.

Locking to achieve transaction isolation may not be practical for all
transactional environments; however, it remains the most common mech-
anism to achieve transaction isolation.

>

vides support for transaction synchronization and recovery, and may provide the
ability to communicate with other transaction manager instances.

A transaction context contains information about a transaction. Concep-
tually, a transaction context is a data structure that contains a unique transaction
identifier, a timeout value, and the reference to the transaction manager that con-
trols the transaction scope. In Java applications, a transaction manager associates
a transaction context with the currently executing thread. Multiple threads may
be associated with the same transaction context—dividing a transaction’s work
into parallel tasks, if possible. The context also has to be passed from one trans-
action manager to another if a transaction spans multiple transaction managers
(see Figure 14.4).

Two separate but interconnected Java specifications pertain to the operation
and implementation of Java transaction managers. These are detailed in the next
sections. >

Two-Phase Commit and Global Transactions

Global transactions span multiple resource managers. To coordinate global
transactions, the coordinating transaction manager and all participating resource
managers should implement a multiphased completion protocol, such as the
two-phasecommit (2PC) protocol (Figure 14.1). Although there are several propri-
etary implementations of the this protocol, X/Open XA is the industry standard.
Two distinct phases ensure that either all the participants commit or all of them
roll back changes.

During the first, or prepare phase, the global coordinator inquires if all partici-
pants are prepared to commit changes. If the participants respond in the affirma-
tive (if they feel that the work can be committed), the transaction progresses to
the second, or commit phase, in which all participants are asked to commit changes.

Concepts 587

Transaction Manager versus TP Monitor

Transaction processing (TP) monitors, such as CICS and IMS/DC, enhance
the underlying operating system’s scalability and its ability to manage
large transaction volumes, by taking on some of the roles of the under-
lying operating system. For example, a TP monitor, in addition to manag-
ing transactions, also performs connection pooling and task/thread pool-
ing and scheduling. Transaction management is only one function of a TP
monitor. In today’s J2EE environment, application servers perform a similar
function and may be thought of as modern equivalents of TP monitors.

>

The two-phase commit protocol ensures that either all participants commit
changes or none of them does. A simplified explanation follows of how this hap-
pens in a typical transaction manager. To keep the discussion brief, we examine
only a few failure scenarios. Once a transaction starts, it is said to be in-flight. If a

588 Chapter 14 Transaction Management

Two phase commit and Global transactions

Phase 1

Phase 2

Client

Client

Request
Commit

Transactional
outcome

Coordinator
(TM)

Coordinator
(TM)

Participant
(resource
manager)

Participant
(resource
manager)

Participant
(resource
manager)

Participant
(resource
manager)

Prepare to commit

Commit/rollback

Prepare to commit

Commit/rollback

Reply (prepared)

Reply

Reply (prepared)

Reply

Figure 14.1
The two-phase

commit
protocol

machine or communication failure occurs when the transaction is in-flight, the
transaction will be rolled back eventually.

In the prepare phase, participants log their responses (preparedness to com-
mit) to the coordinator, and the state of the transaction for each participant is
marked in-doubt. At the end of the prepare phase, the transaction is in-doubt. If a
participant cannot communicate with the global coordinator after it is in the in-
doubt state, it will wait for resynchronization with the coordinator. If resyn-
chronization cannot take place within a predefined time, the participant may
make a heuristic decision either to roll back or commit that unit of work. (Heuris-
tic or arbitrary decisions taken by the participant are a rare occurrence. We em-
phasize this because it is a conceptual difference between current transaction
models and those such as BTP, discussed later in the chapter).

During the second phase, the coordinator asks all participants to commit
changes. The participants log the request and begin commit processing. If a fail-
ure occurs during commit processing at one of the participants, the commit is re-
tried when the participant restarts.

Transaction Models

Transactions managers can provide transactional support for applications using
different implementation models. The most common is the flat transaction
model. A transaction manager that follows the flat transaction model does not al-
low transactions to be nested within other transactions. The flat transaction
model can be illustrated by examining the transaction model employed in J2EE
application servers today.

As an example, Flute Bank provides a bill payment service. The service is im-
plemented by an EJB that interacts with two other EJBs the account manage-
ment EJB (to update account balance) and the check writing EJB (to write out a
check to the payee).

Table 14.1a illustrates the scope of transactions in the scenario where all three
EJBs are deployed with declarative transaction attribute of Required.

Table 14.1b illustrates the scope of transactions where the bill payment ser-
vice EJB and account management EJB are deployed with transaction attribute
Required but the check writing EJB is deployed with a transaction policy of
RequiresNew. In this scenario, when the check writing EJB method is executed,
the container suspends T1 and starts a new transaction, T2. Check writing occurs
within the scope of the second transaction. When control returns to the bill pay-
ment EJB, T2 is committed, and the previous transaction is activated. So, in a flat
transaction model, two transactions are executed in different scopes—T2’s scope
is not within T1’s scope.

Concepts 589

In effect, one business activity (bill payment) is executed under the scope of
two separate transactions. In a flat transaction model, the only way to correctly
control the scope of transactions that span multiple services is to reach an agree-
ment beforehand on how these services will be combined for a business activity
and to apply appropriate transaction policies for the services by agreement.

What if the check writing service were created and hosted by a different com-
pany? What if the check writing company did not want its deployment attributes
to be dictated by Flute Bank? What if other customers (Flute Bank’s competitor)
of the check writing company wanted a contradictory transaction policy? Would
it not be in Flute Bank’s interest to have its bill payment transaction control the
outcome of the business activity, regardless of whether the check writing com-
pany decided to start a new transaction or not?

A nested transaction model, shown in Figure 14.2, is one solution to the above
problem. It allows transactions to consist of other transactions: a top-level trans-
action may contain subtransactions. In a nested transaction model, with respect to
the above example, the bill payment service would start a top-level transaction
(t). Both the account management service and the check writing service are free to
start new transactions (ts1 and ts2). But both these subtransactions are within the
scope of the top-level transaction (t). Transactions in a nested transaction model
also adhere to the ACID properties of transactions—that is, t completes success-
fully only if ts1 and ts2 both complete successfully. If either subtransaction fails,
the top-level transaction would fail, thereby guaranteeing atomicity.

A nested transaction model allows services to be built independently and
later combined into applications. Each service can determine the scope of its
transaction boundaries. The application or service that orchestrates the combi-
nation of services controls the scope of the top-level transaction.

590 Chapter 14 Transaction Management

Table 14.1a All EJBs Deployed with Transaction Attribute Required

Component BillPayment EJB AccountMgmt EJB CheckWrite EJB BillPayment EJB

Transaction T1 T1 T1 T1 (terminates)

Table 14.1b Account Management EJB with Transaction Attribute RequiresNew

Component BillPayment EJB AccountMgmt EJB CheckWrite EJB BillPayment EJB

Transaction T1 T1 T2 (started, then
terminated)

(T1 resumed, then
terminated)

Java Transaction API (JTA)

In a J2EE environment, the transaction manager has to communicate with the
application server, the application program, and the resource managers, using a
well-defined and standard API. The Java Transaction API (JTA) is defined pre-
cisely for this purpose. It does not specify how the transaction manager itself has
to be implemented but how components external to the transaction manager
communicate with it. The JTA defines a set of high-level interfaces that describe
the contract between the transaction manager and three application components
that interact with it: the application program, resource manager, and application
server. These are described below. The next section describes the Java Transaction
Service (JTS) specification—a related specification that deals with the implemen-
tation details of transaction managers.

• JTA contract between transaction managers and application programs. In
J2EE applications, a client application or server EJB component whose trans-
action policy is managed in the bean code (TX_BEAN_MANAGED) can explicitly
demarcate (i.e., start and stop) transactions. For this purpose, the application
gets a reference to a user transaction object that implements the javax.trans-
action.UserTransaction interface. This interface defines methods, among
others, that allow the application to commit, roll back, or suspend a trans-
action. The transaction that is started or stopped is associated with the calling
user thread.

Concepts 591

Top-level transaction (t)

End of transaction

Flute Account debit
Subtransaction (ts1)

Check service
checkwrite

subtransaction (ts2)

time

Figure 14.2
Nested

transactions

• In a Java client application, the UserTransaction object is obtained by look-
ing up the application server’s JNDI-based registry. There is no standard
JNDI name for storing the UserTransaction reference, so the client appli-
cation must know beforehand (usually by reading a configuration file) how
to obtain the UserTransaction object from the application server’s JNDI
registry. In an EJB, the UserTransaction object is exposed through the
EJBContext.

• JTA contract between transaction managers and application servers. J2EE
containers are required to support container-managed transactions. The con-
tainer demarcates transactions and manages thread and resource pooling.
This requires the application server to work closely with the transaction man-
ager. For example, in an EJB where the container has to manage transaction
demarcation, the EJB container has to communicate with the transaction
manager to start, commit, and suspend transactions. The J2EE application
server and transaction manager communicate via the javax.transaction
.TransactionManager interface.

• JTA contract between transaction managers and transactional resource
managers. Resource managers provide an application access to resources,
which can be databases, JMS queues, or any other transactional resource. An
example of a global transaction is the one that changes a Flute Bank em-
ployee’s address: it involves updating the employee master database (Oracle)
and posting a message to a JMS queue (MQSeries) for the external payroll
company (because payroll taxes can change based on employee address). For
the transaction manager to coordinate and synchronize the transaction with
different resource managers (in this example, Oracle and MQSeries), it must
use a standards-based, well-known transaction protocol that both resource
managers understand (such as X/Open XA).

• JTA defines the javax.transaction.xa.XAResource interface, which allows a
transactional resource manager, such as a DBMS or JMS implementation, to
participate in a global transaction. The XAResource interface is a Java map-
ping of the industry-standard X/Open XA. J2EE applications communicate
to the resource managers via a resource adapter (e.g., JDBC connection), and
JDBC 2.0 extensions support distributed transactions. JDBC 2.0 provides
two interfaces that support JTA-compliant resources: the javax.sql.XACon-
nection and javax.sql.XADataSource.

• Similarly, JMS providers implement the javax.jms.XAConnection and the
javax.jms.XASession interfaces in supporting JTA transaction managers.

592 Chapter 14 Transaction Management

Java Transaction Service

The JTA specification’s main purpose is to define how a client application, the
application server, and the resource managers communicate with the transaction
manager. Because JTA provides interfaces that map to X/Open standards, a JTA-
compliant transaction manager can control and coordinate a transaction that
spans multiple resource managers (distributed transactions). JTA does not specify
how a transaction manager is to be implemented, nor does it address how multi-
ple transaction managers communicate with each other to participate in the
same transaction. That is, it does not specify how a transaction context can be
propagated from one transaction manager to another. The Java Transaction Ser-
vice (JTS) specification addresses these concepts.

JTS specifies the implementation contracts for Java transaction managers. It
is the Java mapping of the CORBA Object Transaction Service (OTS) 1.1 specifi-
cation. The OTS specification defines a standard mechanism for generating and
propagating a transaction context between transaction managers, using the IIOP
protocol. JTS uses the OTS interfaces (primarily org.omg.CosTransactions and
org.omg.CosTSPortability) for interoperability and portability. Because JTS is
based on OTS, it is not unusual to find implementations that support trans-
actions propagating from non-Java CORBA clients as well.

Within a JTS-compliant transaction manager implementation, a communi-
cation resource manager component handles incoming and outgoing trans-
action requests. Details of the interaction between the application server and a
JTS transaction manager can be found in the JTS specification document.

In addition to being a Java mapping of OTS, the JTS specification also man-
dates that a JTS-compliant transaction manager implement all JTA interfaces—
that is, a JTS-based transaction manager interfaces with an application program,
the application server, and resource managers, using the JTA. Figure 14.3 shows
the relationship between the application components involved in a transaction.

> A Transaction Model for Web Services

So far, we have examined the properties, transactions, and specifications for
transaction managers in the current Java/J2EE environment. Most, if not all, of
today’s Java transaction managers implement the flat transaction model, in com-
pliance with JTA and/or JTS. Also, most transactions today are executed within

A Transaction Model for Web Services 593

the scope of one enterprise, within one trust domain, and with all resources
under the control of one transaction manager. A business transaction may be de-
fined as a consistent state change in the business relationship among two or more
parties, with each party maintaining an independent application system (or Web
service) that maintains the state of each application. Business transactions form a
good number of transaction types in Web services.

While the flat transaction model is well suited for traditional business com-
puting environments, a Web services environment can create new, interesting
challenges for flat transactions:

• Loose coupling among services. A Web service application is a loose cou-
pling of constituent Web services and is often constructed by combining Web
services from multiple organizations. In this scenario, each service may im-
plement a standalone business process and therefore demarcate transaction

594 Chapter 14 Transaction Management

Transaction Manager
(JTA Support)

Transaction Manager
(JTS Support)

Communication Resource
Manager (JTS)

X
A

R
es

ou
rc

e
In

te
rfa

ce

U
se

rT
ra

ns
ac

tio
n

In
te

rfa
ce

Tr
an

sa
ct

io
nM

an
ag

er
In

te
rfa

ce

Transaction Manager
(JTA Support)

Transaction Manager
(JTS Support)

Communication Resource
Manager (JTS)

X
A

R
es

ou
rc

e
In

te
rfa

ce

U
se

rT
ra

ns
ac

tio
n

In
te

rfa
ce

Tr
an

sa
ct

io
nM

an
ag

er
In

te
rfa

ce

Client
Application

Application
Server

Resource
Manager

Resource
Manager

Transaction Manager Implementation Transaction Manager Implementation

Transaction context over IIOP

Figure 14.3
JTS transaction

manager
components

boundaries within the service. Because transactions are started and commit-
ted within each service, it is not possible to use a simple flat transaction model
within the combined application.

For example, in Flute Bank’s bill payment service, Flute works with an exter-
nal check writing service to mail payment checks on behalf of its customers.
That is, when a Flute customer transacts with Flute’s bill payment service, the
service has to accomplish two separate functions as a part of one atomic trans-
action: it has to debit the customer’s checking account, and it has to transact
with the external check-writing service and send details of the payee (payee
address, payment amount, etc.) If the external check-writing service demar-
cates its own transaction, a flat transaction model may be inadequate to guar-
antee atomicity to the Flute consumer’s action. (The consumer’s interaction
is internally implemented as two distinct transactions).

It should be said that a nested transaction model will accommodate this situa-
tion, but it is not the only model that can do so. A flat transaction model that
supports interposition also can accommodate this situation; we look at inter-
position in the later sections that explain the Business Transaction Protocol
(BTP).

• Long-running transactions. Many business transactions are long-running—
some may run for hours or days. As transaction isolation is achieved by hold-
ing locks on resources, long-running transactions may reduce transaction
concurrency to unacceptable levels. Moreover, in a business transaction, the
actions of one party affect how long another’s resources are locked, opening
the door for denial-of-service attacks. It is clear that the isolation property
(which controls locking) must be relaxed in such transactions.

Because a business transaction can take a long time to complete, businesses
often impose a time limit on certain types of transactions. For example, an
airline may hold a tentative reservation for a travel agency for two days. When
the time limit is reached, the airline may decide to either cancel or confirm
the reservation automatically. The time period for timeout and the result
(confirm or cancel) should be a business agreement between the two parties.
The transaction protocol should anticipate such events and allow for negotia-
tion between the participants.

• Optional subtransactions. In some business transactions, a subset of activi-
ties may be optional. An example of a fictitious travel agency will better illus-
trate such a situation.

Assume that the travel service will search with multiple airline services to find
flights, based on a consumer’s request. Further assume that the airlines all
take a pessimistic approach to their commitment: when the travel agent ser-

A Transaction Model for Web Services 595

vice requests seats on a particular flight, if enough seats are available, the air-
lines lock the seats for the travel agent and marks the seats unavailable to
other requests. Figure 14.4 depicts the participants in this example.

In such a scenario, a transaction initiated by a consumer request will result in
the agency requesting seats from one or more airline systems (in the example
airlines A, B, and C), a rental car agency, and a hotel. Some airline systems
may decline to participate in the transaction (perhaps because no seats are
available, as is the case with airline C), and more than one may lock seats for
the request (airlines A and B both have seats and confirm them).

Airline C’s failure to commit seats cannot be considered a failure of the reser-
vation transaction as a whole, because the application can determine the
atomic subset of participants, based on business logic. As a result, the atomic
property of the transaction need not be satisfied. Moreover, should multiple
airlines lock seats (Airlines A and B), a compensating transaction that releases
previously booked seats will have to be generated for Airline B, so that only
one airline eventually reserves the required seats. This, in effect, conceptually
relaxes the durability property of the reservation transaction initiated by the
travel service. For this solution to work, application logic has to be written to

596 Chapter 14 Transaction Management

Coordinator/
Composer

Hotel
(Participant)

Airline A
(Participant)

Rental Car
(Participant)

Expensive
Airline B

(Participant)

Fully booked
Airline C

(Participant)

reserve

reserved

reserved

reserved

reserved

reserve

reserve
reserve

Unavailable

Prepare Atomic subset

Figure 14.4
Atomicity

relaxed,
travel agency

example

select the subset of activities that must be considered atomic and also to gen-
erate compensation transactions.

• Transaction context propagation. A Web service application that combines
Web services from different organizations will have transactions that span the
services. The constituent services may be implemented using different tech-
nologies on different platforms (e.g., UNIX, Windows) and may store state in
heterogeneous databases. When a transaction spans these disparate services,
the transaction context must be passed from service to service. In a JTS envi-
ronment, JTS specifies how a compliant transaction manager propagates the
context from one transaction manager to another over IIOP. A Web service
transaction manager must accommodate XML-based transaction contexts
propagated over Web service protocols.

This section has illustrated the need for a new model for transactions and
transaction management. In the new model, a transaction is viewed as a series of
business activities with the context of the transaction made available to each ac-
tivity. The execution of activities is coordinated, but individual activities may de-
cide to commit the effects of the transaction and make the effects visible before
the larger transaction is completed. However, the flat transaction model is ade-
quate for a large number of Web service applications—those that feature short
transactions and those in which individual services persist data into a central
database or databases within the same enterprise. The new model therefore has to
support both the properties of ACID transactions and the relaxed ACID proper-
ties demanded by loosely coupled, long-running business transactions. >

Table 14.2 summarizes the differences between traditional transaction mod-
els and the new model.

> New Transaction Specifications

In this section, we discuss three important proposed standards that implement
new transaction models: Business Transaction Protocol (BTP) from OASIS, WS-
Transaction from IBM and Microsoft, and Activity Service from OMG. Their
purpose is to coordinate Web services into applications that provide reliable out-

New Transaction Specifications 597

Strictly speaking, adoption of this new model is not dictated primarily by
Web service architectures but by the fundamental long-running nature of
business transactions. Web service architecture has simply accentuated
the need for it.

>

comes. Of the three, BTP is the most mature and sophisticated. We examine it
first and in the most detail.

Business Transaction Protocol (BTP)

In May 2002, the OASIS Business Transaction Technical Committee (BTTC)
published a specification, BTP 1.0, for coordinating transactions between appli-
cations controlled by multiple autonomous parties. BTP 1.0 is the work of sev-
eral companies (BEA, IBM, Sun, HP, Choreology, ORACLE, and others) that
addresses the challenges posed by business transactions to traditional transaction
models.

Examining BTP messages and interactions in detail is beyond the scope of
this book. Our intention is to describe the concepts and motivations behind
BTP. The full BTP specification can be found at www.oasis-open.org/committees/
business-transactions.

BTP recognizes that in a business transaction, no single party controls all re-
sources needed. In such an environment, parties manage their own resources but
coordinate in a defined manner to accomplish the work scoped by a transaction.
Individual service providers either agree to join a transaction or not. If they agree,
they are required to provide a mechanism to confirm or cancel their commit-

598 Chapter 14 Transaction Management

Table 14.2 Properties of Traditional and Business Transaction Models

Property Traditional transactions Business transactions

Atomicity Required; all or nothing. Depends; sometimes desirable,
sometimes may be applicable
only to a subset of functions.

Consistency Required. Required; temporary inconsis-
tencies rectified.

Isolation Required; state change is
not visible until transaction
completes.

Relaxed; each service controls
degree of visibility.

Durability Required; effects persist. Required, but based on atom-
icity property; some parts may
be volatile.

Context
propagation

Relaxed; may not be
required.

Required.

ments to the transaction. They may, however, autonomously decide when to un-
lock resources they hold and/or whether to use compensating transactions to roll
back transient states that were persisted.

The BTP specification did not arise out of the need created by Web services ar-
chitecture but was formed to address the needs of interorganizational transac-
tions and of workflow systems. However, the authors realized early on the limita-
tions of similar coordination protocols tied to communication protocols.

BTP defines an abstract message set and a binding to communication proto-
cols. Its ability to coordinate transactions across multiple autonomous services
and its use of XML messages makes it particularly suited for adoption in Web ser-
vice architectures. BTP is designed such that the protocol may be bound to any
carrier protocol, and BTP implementations bound to the same carrier protocols
should be interoperable. The current specification describes a SOAP 1.1/HTTP
binding.

Transaction and security aspects of an application system are often related,
but the BTP specification consciously does not address how a BTP transaction
will integrate with a security system, because Web services security standards are
still evolving (independently of the transaction specifications).

Application and BTP Elements

BTP is a protocol—a set of well-defined messages exchanged between the applica-
tion systems involved in a business transaction. Each system that participates in a
business transaction can be thought of as having two elements—an application ele-
ment and a BTP element (Figure 14.5).

New Transaction Specifications 599

Initiating Application
Element
(Initiator)

Service Producer

BTP Element
(Superior)

BTP Element
(Inferior)

Service Consumer Service Producer

Application Messages

BTP Messages

Figure 14.5
Application

and BTP
elements
overview

The application elements exchange messages to accomplish the business
function. When Flute Bank’s bill payment service sends a message to the check
writing service with details of the payee’s name, address, and payment amount,
the application elements of the two services are exchanging a message.

The BTP elements of the two services also exchange messages that help com-
pose, control, and coordinate a reliable outcome for the message sent between
the application elements.

The application element pertains to the service consumer and service pro-
ducer components the application programmer deploys—that is, application/
business logic. The BTP elements are supplied by the BTP vendor. The separation
of system components into BTP and application elements is a logical one. These
elements may or may not coexist in a single address space.

With respect to a BTP transaction, application elements play the role of initia-
tor (the Web service that starts the transaction) and terminator (the Web service
that decides to commit or end the transaction). The initiator and terminator of a
transaction are usually played by the same application element.

BTP elements play either a superior or inferior role. The BTP element associ-
ated with the application element that starts a business transaction is usually as-
signed the superior role. The superior informs the inferior when to prepare to ter-
minate the transaction and waits for the inferior to report back on the result of its
request. The following sections detail roles played by BTP elements and the na-
ture and content of BTP messages.

Types of BTP Transactions

Table 14.2 summarized the transactional properties business transactions must
satisfy. In all types of business transactions, the isolation property is relaxed.
Some business transactions require the entire transaction to be treated as an
atomic operation, while another class of business transactions requires that the
atomic property also be relaxed. BTP accommodates both types of transaction
needs. BTP Atomic Business Transactions, or atoms, are like traditional trans-
actions, with a relaxed isolation property. >

600 Chapter 14 Transaction Management

In traditional transactions, a transaction manger will cancel (roll back) a
transaction if any resource manager participating in the transaction can-
not commit or cannot prepare. In BTP, this is not always the case; the set of
participants that must confirm before a transaction can be committed is
called a confirm-set. The confirm-set may be the set of all participants or a
subset of participants.

>

BTP Cohesive Business Transactions, or cohesions, are transactions where both
isolation and atomicity properties are relaxed.

Atoms Atoms are business transactions where all participants have to agree bef-
ore a transaction can be committed that is, all participants in an atom are guaran-
teed to see the same ending to the transaction. If any participant cannot confirm,
the entire transaction is canceled. Because BTP transactions do not require strict
isolation, it is up to each participating service to determine how to implement
transaction isolation.

Figure 14.6 depicts a Web service consumer invoking two business methods
on two different services, within the scope of a transaction. If the overall trans-
action is an atom, the BTP element (superior) at the service consumer end is
called an atom coordinator or simply a coordinator. The BTP element plays the co-
ordinator role and coordinates a BTP atomic transaction. It does this by ex-
changing BTP messages with the BTP elements associated with the two service
producers when the application asks it to complete the transaction.

As Figure 14.6 also shows, inferior BTP elements are called participants. The
participant is in charge of persisting the state change made by the associated ap-
plication element (service producer), which it does by following instructions (via
BTP messages) from the superior (coordinator). If either participant informs the
superior that it cannot confirm the transaction, the transaction is rolled back—
that is, the confirm-set in this example is “participant a” and “participant b.” >

Cohesions Cohesions are transactions where not all involved parties must agree
to commit their changes before a transaction is committed. Only some subset of
the parties may need to agree. The subset of parties that need to agree before a
transaction can be completed is determined using business logic and is called the
confirm-set.

In the example illustrated by Figure 14.4, airline C refuses to reserve seats on
the requested flight, because it is fully booked. This refusal to participate in the
transaction does not mean that the transaction should be rolled back, because
the application logic is able to determine that two other airlines have reserved
seats on their flights. Furthermore, because two airlines have reserved seats, the
application element must instruct the BTP superior to cancel the more expensive
reservation. The BTP superior that composes the transaction based on instruc-
tions from the initiating application element is called a cohesion composer. The

New Transaction Specifications 601

An atom is a BTP transaction whose confirm-set is the set of all inferiors—
that is, in an atom, any inferior has power to veto the transaction.

>

confirm-set in the example is the BTP elements associated with the Web services
of Airline A, the rental car agency, and the hotel.

Referring to Figure 14.6, in a cohesion scenario, the BTP element (superior) at
the service consumer end is called a cohesion composer or simply a composer. The
BTP element associated with the service producer is called a participant. In a cohe-
sion scenario, the business logic in application element (initiating element) can
determine whether the transaction can be completed—that is, whether “partici-
pant a” only need confirm, “participant b” only need confirm, or both must con-
firm. If only one participant must confirm but both eventually confirm, the com-
poser will ask the unwanted participant to cancel.

602 Chapter 14 Transaction Management

Initiating Application
Element;

Service Consumer
(Initiator)

BTP Element
(Superior)

Service or client

Service Producer

Inferior BTP Element
(participant a)

Service

Service Producer

Inferior BTP Element
(participant b)

Service

Superior is called a
in an atomcoordinator

Superior is called a
in a cohesioncomposer

Busin
ess

 m
ethod in

vo
ke

d

(A
pplica

tio
n m

ess
age)

BTP M
ess

ages

Application Message

BTP Messages

(transaction control messages)

Figure 14.6
Application

and BTP ele-
ments in an

atom/cohesion

In BTP, the actions of transaction coordinator or composer can be influenced
by application elements (i.e., business logic). In a cohesion, the initiating appli-
cation element determines which subset of activities is to be included in the over-
all transaction by providing that information to the superior. Application elements
can also influence the control and coordination of the transaction by providing
the superior with additional context information (via qualifiers; see next section),
such as transaction time limits and other application-specific values. >

BTP Transactions and Locking

For both atoms and cohesions, the isolation level for cohesions is left up to each
service. Isolation can be achieved by:

• Making changes but applying locks, as in traditional transactions

• Deferring changes until a transaction commits (perhaps by writing a log of
changes that will be applied later)

• Making changes and making the interim results visible to others

If the third option is chosen, the effect of making interim changes visible is
called the provisional effect. If a service makes visible provisional changes and the
transaction is ultimately rolled back, new transactions (compensations) may
have to be generated to undo the changes made (This is known as the counter
effect).

BTP Actors, Roles, and Messages

As mentioned earlier, the BTP element associated with the initiator plays the su-
perior role. The initiator is also usually the terminator of the initiated transaction.
Depending on the type of business transaction, superiors are either coordinators
or composers of the business transaction—an atom is coordinated by an atom co-
ordinator (coordinator), and a cohesion is composed by a cohesive composer (com-
poser). All other BTP elements are inferiors to this superior. In the simplest case,
with only one superior and one inferior (i.e., only two parties are involved in the
business transaction), the inferior is called a participant.

New Transaction Specifications 603

A cohesion is a transaction whose confirm-set is a subset of all inferiors par-
ticipating in the transaction—that is, only inferiors in the confirm-set have
the power to veto the transaction. This subset is determined by applica-
tion logic, and the application element passes the confirm-set to the com-
poser before asking the composer to complete the transaction.

>

Figure 14.7 shows a more detailed version of Figure 14.5. The application (ini-
tiator) first asks a BTP element called the factory to create the coordinator/com-
poser. The factory creates the superior and returns the transaction context. The ini-
tiator then invokes the business method on the service consumer and passes the
context to the service.

How the context is passed depends on the protocol binding. It is, for exam-
ple, stuffed as a header block in a SOAP message. At the other end, the invoked
service asks a BTP element called enroller to enroll in the transaction, passing the
received context. The enroller creates the inferior (participant) and enrolls in the
transaction with the superior. Finally, the service provides the response to the
business method and passes along the context reply. The message sequence diagram
in Figure 14.8 details the exchange of messages between the different elements.

BTP messages must be bound to a protocol such as SOAP. Because we have
not yet described the BTP binding to SOAP, the following section shows only ab-
stract forms of BTP messages.

All BTP messages have an associated schema. The CONTEXTmessage shown be-
low is an example of a BTP message.

<btp:context id>
<btp:superior-address> address</btp:superior-address>
<btp:superior-identifier> URI </btp:superior-identifier>

604 Chapter 14 Transaction Management

Service
Consumer
(Initiator/

Terminator)

Factory
Coordinator

OR
Composer

Service Consumer Service Producer

Application Messages

BTP Messages

BTP Element

Application Element

Service

Participant

BTP Element

Application Element

Enroller

Figure 14.7
BTP and

application
elements

<btp:superior-type>atom</btp:superior-type>
<btp:qualifiers> qualifiers </btp:qualifiers>
<btp:reply-address> address </btp:reply-address>
</btp:context>

The superior-address element contains the address to which ENROLL and
other messages from an inferior are to be sent. Every BTP address element (supe-
rior-address, reply-address, etc.) has the following XML format:

<btp:superior-address>
<btp:binding-name> </btp:binding-name>
<btp:binding-address></btp:binding-address>
<btp:additional-information>information ... </btp:additional-
information>

</btp:superior-address>

New Transaction Specifications 605

Initiator Factory

Coordinator

Service Enroller

Participant

1:BEGIN
1.1:new

1.1.1:newContext

2:getContext

3:BEGUN with
CONTEXT

4:businessMessage(CONTEXT)
4.1:ENROLL(CONTEXT)

4.1.2:ENROLL

4.1.2.1:ENROLLED

4.2:BusinessMesgReply(CONTEXT_REPLY)

4.1.1:new(CONTEXT)

Figure 14.8
BTP actors and
messages over-

view

superior-identifier contains a unique identifier (URI) for the superior. su-
perior-type indicates whether the context is for a transaction that is an atom or a
cohesion. The qualifiers element provides a means for application elements to
have some control over transaction management. Qualifiers are data structures
whose contents can influence how the transaction coordinator/composer con-
trols the transaction. BTP defines a few standard qualifiers (such as transaction
time limit), but BTP vendors can define more such parameters.

The reply-address element contains the address to which a CONTEXT_REPLY
message is to be sent (this is required only if the BTP message is not sent over a re-
quest-response transport).

BTP Two-Phase Protocol

Once the initiating application decides to terminate the transaction, it asks the
BTP superior to confirm the transaction. The BTP elements then follow a two-
phase protocol to complete the transaction. This is quite similar to the two-phase
protocol used in the flat transaction model, but there are some key differences,
discussed later in this section. Figure 14.8 illustrated how a transaction is started.
Figure 14.9 shows how such a transaction is terminated using the two-phase pro-
tocol.

On receiving a PREPARE message, an inferior (in Figure 14.9, the participant)
can reply with a PREPARED, CANCEL, or RESIGN message. In Figure 14.9, because
only one inferior exists, the participant must reply with a PREPARED message if the

606 Chapter 14 Transaction Management

ParticipantInitiator Coordinator Service

1:CONFIRM_TRANSACTION
1.1:PREPARE

1.1.1:PREPARED

1.2.1:CONFIRMED

1.2:CONFIRM

1.3: CONFIRMEDTRANSACTION_

Figure 14.9
A simple atom
example illus-

trating the BTP
two-phase

protocol

transaction is to be confirmed and progress to phase 2 (CONFIRM). An example of
the BTP message for PREPARE is shown below:

<btp:prepare id>
<btp:inferior-identifier> URI </btp:inferior-identifier>
<btp:qualifiers>qualifiers</btp:qualifiers>
<btp:target-additional-information>

additional address information
</btp:target-additional-information>
<btp:sender-address>address</btp:sender-address>

</btp:prepare>

As explained previously, the qualifiers element contains a set of standard or
application-specific qualifiers. The timeout for inferiors is one of the qualifiers
that should be sent for a PREPARE message. target-address points to the address
of the inferior that was ENROLLed. The PREPARE message will be sent to that ad-
dress. The sender-address points to address of the superior.

The effect on the outcome of a final transaction of having multiple inferiors
depends on whether the transaction is a cohesion or is an atom. The set of inferi-
ors that must eventually return CONFIRMED to a CONFIRM message for the trans-
action to be committed is called a confirm-set. For an atomic transaction, the set
consist of all of a superior’s inferiors. For a cohesion, the confirm-set is a subset of
all its inferiors. The subset is decided by the application element associated with
the superior (this implies that business logic is involved).

Figure 14.10 illustrates how a composer with multiple participants confirms a
cohesion with the two-phase protocol. The application element (the initiator and
the terminator of the transaction) decides that only participants 1 and 2 should
confirm—that the confirm-set consists of participants 1 and 2. To accomplish this,

1. The terminator sends a CONFIRM_TRANSACTION with the IDs of the participants
in the confirm-set.

2. The decider (composer) sends PREPARE messages to participants 1 and 2 and a
CANCEL message to participant 3.

3. As soon as PREPARED messages return from participants in the confirm-set, the
decider sends out CONFIRM (phase 2) messages.

4. When the confirm-set replies with CONFIRMED messages, the transaction is
confirmed.

New Transaction Specifications 607

How the confirm subset is passed to the decider is better understood by exam-
ining the CONFIRM_TRANSACTION message structure:

<btp:confirm-transaction id>
<btp:transaction-identifier> ... URI ... </btp:transaction-identifier>
<btp:inferiors-list>

<btp:inferior-identifier> inferior URI</btp:inferior-identifier>
<btp:inferior-identifier> inferior URI</btp:inferior-identifier

</btp:inferiors-list>
<btp:report-hazard>true</btp:report-hazard>
<btp:qualifiers>qualifiers</btp:qualifiers>
<btp:target-additional-information>

info
</btp:target-additional-information>
<btp:reply-address> decider address</btp:reply-address>

</btp: confirm_transaction>

608 Chapter 14 Transaction Management

Participant 2 Participant 3Initiator(Terminator) Composer(Decider) Participant 1

1:CONFIRM_TRANSACTION(1.2)
1.1:PREPARE

2:PREPARED

3:CONFIRM

6:CONFIRMED

7:CONFIRM

8:CONFIRMED

5:PREPARED

4:CANCELLED

1.2:PREPARE

1.3:CANCEL

1.3: CONFIRMEDTRANSACTION_

Figure 14.10
Cohesion

completion

Note that inferiors-list contains only the confirm-set of inferiors. If this el-
ement is absent, all inferiors are part of the confirm-set. For an atom, because all
participants are in the confirm set, this element must not be present.

The report-hazard element defines when the decider informs the application
that the transaction is conformed (TRANSACTION_CONFIRMED message):

• If report-hazard is true, the decider waits to hear from all inferiors, not just
the confirm-set, before informing the terminator.

• If report-hazard is false, the decider must wait for all elements (even ele-
ments that receive a CANCEL message) to reply before communicating the out-
come of the transaction to the terminator.

report-hazard is useful when the application element wants to know if there
was a hazard (problem) with any inferior. >

Differences between the BTP and Current Two-Phase Commit Protocols

As discussed in the “Isolation Levels and Locking” sidebar earlier, BTP does not
require a participant waiting for a confirm message to hold locks for maintaining
application state. A prepared participant can choose to apply application state
changes to the database and make this interim “provisional effect” visible. In do-
ing so, it has to hold a compensating transaction ready to be applied (the counter
effect), in case of the need to cancel.

Because Web service transactions can span networks prone to communica-
tion failure or congestion, a participant and its superior may not be able to com-
municate readily. BTP recognizes this and accommodates possible communica-
tion failures. A participant can limit the promise made in sending PREPARED back
to its superior. by retaining the right to autonomously confirm or cancel applica-
tion state changes it controls. This autonomous decision is very much like the
heuristic decision made by in-doubt resources in a normal two-phase commit
protocol. The difference is that whereas other transaction models consider heu-
ristic decisions rare occurrences, BTP anticipates such problems and allows par-
ticipants to indicate how long they are willing to be in a prepared state.

New Transaction Specifications 609

If a coordinator or composer has only one inferior, it may decide to use a
single-phase confirm operation and skip the two-phase protocol. Instead
of a PREPARE + CONFIRM message exchange, it may send a CONFIRM_ONE_
PHASE message to the inferior.

The two-phase protocol used in BTP ensures that either the entire trans-
action is canceled or that a consistent set of participants is confirmed.

>

What happens when a participant, having informed its superior that it is pre-
pared to confirm, makes an autonomous decision to cancel, because it has not re-
ceived the phase-two CONFIRM message within the allotted time? What if, after the
autonomous decision is made to cancel, the superior sends out a CONFIRMmessage?
In such cases, the superior will eventually recognize and log a contradiction, in-
form management/monitoring systems, and send a CONTRADICTION message to
the participant. By sending a contradiction message, the superior acknowledges
the contradiction and informs the inferior that it knows and has tried to cope
with it.

The differences between BTP 2PC and current 2PC can be summed up as
follows:

• In BTP, the application determines the confirm-set.

• BTP provides a means for applications to “tune” the two-phase protocol, by
passing qualifiers to the coordinator. These qualifiers include standard BTP
qualifiers, such as how long a participant is to wait before making an autono-
mous decision. Qualifiers can also be BTP vendor- or application-specific.

• BTP does not require two-phase locking. This can lead to contradictions if
participants make autonomous decisions. Unlike other models, however,
which treat heuristic decisions as rare occurrences, BTP anticipates such prob-
lems and tries to accommodate them.

Complex BTP Element Relationships

So far, we have examined the BTP elements, roles, and message in a rather simple
scenario. A business transaction can span multiple organizations and multiple
services, and BTP accommodates such complex scenarios by describing a tree
structure for relationships between BTP elements. Figure 14.11 illustrates such a
complex relationship. The BTP elements associated with services B and C are
both superiors to other inferiors but are inferiors to the superior (composer A,
also known as the decider). BTP element B is a composer of the transaction cohe-
sion Tc1. As B is an inferior to A, B is called a sub-composer. Similarly, BTP element
C coordinates the atom Ta1 and is a superior to F and G but an inferior to A , so C
is a sub-coordinator.

A sub-composer or sub-coordinator is not a participant; it controls other par-
ticipants and reports to its superior. On receiving PREPARE and CONFIRM messages
from its superior, the sub-composer or sub-coordinator asks its confirm-set to

610 Chapter 14 Transaction Management

New Transaction Specifications 611

Service “A”

Initiator
(Application

Element)

Service “B”

Service “C”

(Application
Element)

(Application
Element)

Sub-
composer

“B”

Sub-
coordinator

“C”

Service “D”

Service “F”

(Application
Element)

(Application
Element)

Participant
“D”

Participant
“F”

Service “E”

Service “G”

(Application
Element)

(Application
Element)

Participant
“E”

Participant
“G”

Cohesion-Tc1

Cohesion-Tc

Atom-Ta1

Application

Messages

Application

Messages

Application
Messages

Application
Messages

BTPMessages

BTPMessages

BTP

Messages

BTP

Messages

Application
Messages

Application
Messages

BTP
Messages

BTP
Messages

Superior to “D” and “E”
Inferior to “A”

Superior to “F” and “G”
Inferior to “A”

Composer
“A”

(Superior)

Figure 14.11
BTP element

tree

PREPARE and CONFIRM and reports the result to its superior. In this way, BTP sup-
ports the creation of relationship trees of arbitrary depth and width. >

To summarize, if an inferior is a superior to other nodes, it may be a sub-composer
or a sub-coordinator. A sub-coordinator treats its inferior’s actions as atomic, while a
sub-composer treats only a subset of its inferiors as atomic. A participant is a BTP in-
ferior element that has no children; it is responsible for applying application
state changes to a persistent store. Figure 14.12 shows the different roles played
by BTP elements and the relationships between them.

BTP and SOAP Binding

BTP defines an abstract message set and a protocol that are independent of
underlying communication protocols over which the messages are to be trans-
mitted. For BTP to be viable for Web services, BTP messages must be transmitted
over the de facto messaging standard for Web services: SOAP. BTP specifications
define a binding for SOAP (and SOAP with Attachments).

As discussed above, most BTP messages are exchanged between BTP ele-
ments and are not mixed with any application-element business messages (e.g.,
PREPARE, CONFIRM). All such BTP messages are sent within the SOAP body under

612 Chapter 14 Transaction Management

Sub-composers and sub-coordinators are interposed (as in injected or in-
serted) into the transaction. By default, BTP supports an interposed trans-
action model, not a nested transaction model.

>

Sub-composer Sub-composerDecider

Superior Inferior

ParticipantSub-coordinator Sub-coordinator

Composer Coordinator

Figure 14.12
Roles played by

superiors and
inferiors

the btp:messages element. A few BTP messages are sent along with application
messages.

One example of this type of message is CONTEXT. The BTP CONTEXT is propa-
gated from a BTP superior to a BTP inferior when the initiating application ele-
ment invokes a business method on a service. The BTP CONTEXT message, there-
fore, must be sent along with the application business message. For such
messages, the BTP message is sent in the SOAP header under a single btp:mes-
sages element, and the application message is sent within the SOAP body. All
BTP messages are sent without any encoding (application messages may be en-
coded).

The following example of a SOAP message starts a BTP atomic transaction in
Flute Bank’s bill payment service. The business method invoked is getLast-
Payment. As a new transaction is started, the BTP CONTEXTmessage is passed, along
with the application message. The CONTEXT message is passed as a part of the
SOAP header. The header is not encoded, but the body, which carries the appli-
cation message, is RPC/encoded.

<?xml version=“1.0” encoding=“UTF-8”?>
<env:Envelope xmlns:env=“http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:enc=“http://schemas.xmlsoap.org/soap/encoding/”
env:encodingStyle=““>

<env:Header>

<btp:messages
xmlns:btp=“urn:oasis:names:tc:BTP:1.0:core”>
<btp:context>

<btp:superior-address>
<btp:binding>soap-http-1</btp:binding>
<btp:binding-address>

http://www.flute.com/btpengine
</btp:binding-address>

</btp:superior-address>

<btp:superior-identifier>
http://www.flute.com/btp01

</btp:superior-identifier>

New Transaction Specifications 613

<btp:qualifiers>
<btpq:transaction-timelimit>

xmlns:btpq=“urn:oasis:names:tc:BTP:1.0:qualifiers”>
<btpq:timelimit>500</btpq:timelimit>
</btpq:transaction-timelimit>

</btp:qualifiers>
</btp:context>

</btp:messages>
</env:Header>

<env:Body>
<ans1:getLastPayment

xmlns:ans1=“http://com.flute.webservice/billPay/wsdl/billPay”>
env:encodingStyle=“ http://schemas.xmlsoap.org/soap/encoding/”

<String_1 xsi:type=“xsd:string”>horizon_wireless </String_1>
</ans1:getLastPayment>

</env:Body>

</env:Envelope>

Although application architects and developers rarely concern themselves
with messages exchanged between BTP elements, let us look at more examples, to
help visualize the transaction coordination. The listing below shows the BEGIN
BTP message over SOAP from the initiating application element to the associ-
ated BTP factory (Figure 14.13). This BEGIN message starts a cohesion.

<?xml version=“1.0” encoding=“UTF-8”?>
<soap-env:Envelope xmlns:soap-env=“http://schemas.xmlsoap.org/soap/envelope/”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>
<soap-env:Body>

<btp:begin transaction-type=“cohesion”
xmlns:btp=“urn:oasis:names:tc:BTP:xml”/>

</soap-env:Body>
</soap-env:Envelope>

The following listing shows a SOAP message with a CANCEL request from a
transaction coordinator to a participant.

614 Chapter 14 Transaction Management

<?xml version=“1.0” encoding=“UTF-8”?>
<soap-env:Envelope xmlns:soap-env=“http://schemas.xmlsoap.org/soap/envelope/”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”>
<soap-env:Body>

<btp:cancel xmlns:btp=“urn:oasis:names:tc:BTP:xml”>
<btp:inferior-identifier>
http://www.flute.com/btp01/Fluteparticipant/-74c4a3c4:8dd-6ce8fec8:1
</btp:inferior-identifier>
<btp:superior-identifier>
http://www.flute.com/btp01/TransactionManager/-77e2b3e4:8aa-3ce8fec8:9
</btp:superior-identifier>
</btp:cancel>

</soap-env:Body>
</soap-env:Envelope >

New Transaction Specifications 615

HP Web Services Transactions (HP-WST)

HP’s Web Services Transactions (WST) is the first implementation of a trans-
action manager based on the BTP specifications. The implementation, avail-
able at www.hpmiddleware.com, supports both cohesive and atomic trans-
actions. HP-WST includes an HP-WST coordinator component, Java libraries
for transaction participants, and libraries for Java clients.

>

The BTP CONTEXT message is sent without any encoding

encodingStyle=””
<btp:messages

<btp:context>
........
</btp:context>

</btp:messages>

The business message is sent using SOAP encoding

<ans1:getLastPayment
xmlns:ans1=”http://com.flute.webservice/billPay/wsdl/billPay”>

env:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

<String_1 xsi:type=”xsd:string”>
verizon_wireless

</String_1>
</ans1:getLastPayment>

Envelope

Header

Body

Figure 14.13
BTP SOAP

message shown
pictorially

WS-Transaction

WS-Transaction (WS-TX) and the related WS-Coordination specifications are
relatively new (released in August 2002). They describe mechanisms to coordi-
nate the executions of individual Web services into reliable applications. The two
specifications, created jointly by Microsoft, IBM, and BEA, rely on or are built
on existing Web services specifications of WSDL, SOAP, and WS-Security.

The execution of a Web service application is seen as a series of activities, each
of which may be executed in a different Web service. WS-Coordination describes
a general mechanism to create, register, and coordinate those activities across
multiple Web services. When a participant Web service creates and registers the
activity, it also identifies the coordination protocol—that is, the way collabora-
tion occurs between activities. The specification does not describe protocols for
coordination,. which can be achieved in many ways. Some coordination proto-
cols may be transactional; some may not.

WS-Coordination provides a generalized framework that allows Web services
to specify the coordination protocol. WS-Transaction describes protocols for
two common transactional coordination patterns that may be used with the WS-
Coordination framework: the atomic transaction coordination pattern and the
business activity transaction pattern. Figure 14.14 shows the relationship be-
tween WS-Coordination and WS-Transaction.

Before describing the WS-Transaction coordination protocols, a brief expla-
nation of the coordination framework described in WS-Coordination is neces-
sary. The latter describes a standard coordination framework, consisting of an

616 Chapter 14 Transaction Management

WS-Coordination

WS-Transaction
(Coordination Patterns)

Activation
Framework

Registration
Framework

Coordination
Framework

Atomic
Coordination

Pattern

Business Activity
Coordination

Pattern

Web
Service

1. Select Coordination
Pattern

2. Start Activity

3. Register Pattern

Figure 14.14
Relationship

between
WS-Coordina-

tion and
WS-Trans-

action

activation service, which helps create a new activity; a registration service, to register
an activity’s participants; and a coordination service, to process an activity’s com-
pletion.

An application contacts the activation service to create an activity, which is
identified by a coordination context. The context is a container (defined by an
XML schema) with elements for an ID, a context expiration time, the coordina-
tion type (the coordination protocols to be used), and other extensible elements.
Web services that participate in the same activity receive application messages
with the context attached. Web services then use the context to identify the regis-
tration service and register as participants to the original activity. The coordina-
tion service controls the completion of the activity, based on the selected coordi-
nation protocol.

A WS-TX atomic transaction coordination pattern preserves the ACID prop-
erties of transactions. The application requests that a new activity be created by
the activity service. The activity service creates a coordination context that has
the coordinationType element set to the URI http://schemas.xmlsoap.org/ws/
2002/08/wstx. The coordination context allows for coordination-protocol-spe-
cific elements to be added to the context, using the extensibility mechanism (e.g.,
a context for an atomic transaction may also carry the isolation level value).

The Web service that created the transaction also registers with the registra-
tion service the coordination or completion pattern service for the completion
protocol. The coordination service controls the completion of the activity, based
on the registered completion protocol.

The BTP and WS-Transaction/WS-Coordination specifications provide for
similar transactional needs. One important difference between them is that al-
though BTP provides bindings for SOAP 1.1, it is independent of current de
facto Web service standards, although WS-Transaction is built on or relies on
SOAP, WSDL, and WS-Security.

Activity Service

Activity Service framework is a submission to OMG in response to OMG’s call
for additional structuring mechanisms for Object Transaction Service (OTS).
OTS, you will recall, is the specification for the CORBA transaction manager.
The Activity Service specification submission, like the BTP specification, ad-
dresses the transactional needs of complex, long-running transactions. The sub-
mission can be found at http://cgi.omg.org/cgi-bin/doc?orbos/2000–06–19.

This specification, unlike BTP, is directly tied to and based on the OMG Ob-
ject Request Broker (ORB) and OTS specifications. The lack of support for XML-
based messages and Activity Service’s tie to OTS may mean that Web services im-
plemented in compliance to it may not transact transparently with services writ-

New Transaction Specifications 617

ten on, say, the .NET platform. However, because most current Java transaction
managers implement JTS (which is a Java mapping of OTS), Activity Service is
likely to have a high impact on how Java transaction managers are implemented.

> JSRs for Web Service Transaction Support

As described earlier, JTA- and JTS-based transaction managers are limited, in that
they are meant to manage and coordinate distributed, ACID transactions. A new
specification is needed to address the complex distributed transactions prevalent
in Web service and workflow applications.

JSR-95, J2EE Activity Service for Extended Transactions, proposes a low-level
API for J2EE containers and transaction managers. JSR-95 borrows from the
OMG Activity Service submission and leverages concepts defined by JTA and
EJB specifications.

JSR-156, XML Transactions for Java (JAXTX), also proposes support for ex-
tended transaction support in J2EE systems. Unlike JSR–95, JSR-156 proposes a
closer relationship to the BTP specification, using XML messaging for trans-
action management and coordination. This proposed Java API also has a loftier
long-term goal: to isolate application programmers and application servers from
the underlying transaction manager implementation (BTP, WS-Transaction, and
Activity Service). >

618 Chapter 14 Transaction Management

The acronym “JAXTX,” in an attempt at consistency with other JAX* APIs,
is, in our opinion, misleading. The other JAX* APIs (e.g., JAXM) are meant
to be used primarily by application programmers. The J2EE specifications
have tried to minimize programmatic transaction demarcation, making
the UserTransaction interface the only JTA interface exposed to the appli-
cation.

We recognize that coordinated, non-atomic transactions (e.g., cohesive
BTP transactions and business transactions in the WS-Transaction specifi-
cation) will require application logic to generate compensation trans-
actions. We also recognize that in determining the subset of activities
treated as atomic, the interface exposed to application programmers must
be expanded beyond the current JTA UserTransaction interface. But the
vast majority of transaction coordination messages are meant to be ex-
changed by components below the application layer. Therefore, we feel
that “JAXTX” is misleading.

>

> Summary

J2EE servers are required only to implement the flat transaction model. This
model is sufficient in situations where the transactional resources are centralized
and under the control of one party. The ACID properties of such transactions
can be maintained without compromise. This transactional model is adequate
for Web service applications with short-running transactions and those in which
transactions do not span organizational boundaries.

The flat transaction mode is inadequate to address the transactional needs of
some business transactions in Web services, which frequently involve the assem-
bly of disparate services. These disparate services may have been written with
their own, autonomous transaction boundaries and may control their own re-
sources. Web services for business-to-business integration can also be long-run-
ning, causing inefficiency as a result of the locking mechanism used for achieving
isolation in traditional transaction models.

Relaxing the isolation property of transactions and allowing subtransactions
to make visible state-change effects before the larger transaction completes solves
the problem of inefficient resource locking in long-running transactions. Al-
lowing a transaction to complete even if only a subset of subtransactions com-
pletes (i.e., relaxing the atomic property) allows a business transaction to be com-
posed based on application needs.

The BTP, WS-TX, and Activity Service specifications address the needs of co-
ordinating long-running business transactions that span autonomous, loosely
coupled services while accommodating the needs of short-running, centralized
transactions. BTP specifies the working of atomic and cohesive transactions, and
WS-TX describes the atomic and business activity patterns for coordination. The
Activity Service submission to OMG also provides a specification for business
transactions but does not reference XML-based messages specifically. (Because
Activity Service is based on OMG OTS, it does provide IDL specifications.)

Two JSRs, JSR-95 and JSR-156 propose an extended transaction model for
the J2EE platform. As of now, no implementations of BTP or Activity Service
transaction managers work seamlessly with J2EE servers. It will be some time be-
fore the relevant JSRs are fleshed out and we see servers with embedded, stan-
dards-based transaction support for extended transaction models. Until then,
our current JTA- and JTS-based flat transaction managers will have to suffice.

Summary 619

