
The Store (Shoplet)

P R O J E C T 1

881-4 CH03.qxd 8/30/07 1:29 PM Page 19

881-4 CH03.qxd 8/30/07 1:29 PM Page 20

Introduction to Rails

This chapter will serve as an introduction to the various parts of the Rails framework.
Because Rails is loosely coupled, it makes sense to introduce the parts by themselves, and
then describe how to fit them together.

On July 24, 2004 the first public version (0.5) of Rails was released. David Heinemeier
Hansson extracted and generalized it from Basecamp, 37signals’ first commercial web appli-
cation. This first release immediately created a huge buzz in the developer community, partly
because of the rapid development made possible by the Rails application architecture. Fifteen
months later, after much progress and many new features, version 1.0 was released on
December 13, 2005. This release solidified everything that made Rails successful and fixed
most bugs and problems discovered before going final.

The next major milestone came on March 28, 2006, when David and company released
version 1.1 with lots of new, interesting support for various JavaScript and Ajax features, better
handling when returning different document formats, polymorphic database associations,
and integration tests.

The last year has seen more than 20 books published about Ruby and Rails. Adoption
among American companies is seriously getting started, and in the summer of 2006 the first-
ever International Rails Conference was held in Chicago. It was a major success, and a few
months later a European RailsConf was held in London.

Let’s get started with the different parts of Rails.

The Structure of a Rails Application
When creating a new Rails application with the rails script, the Rails application generator
will create it following certain conventions. The output directory structure will be deep and
will have support for many different things. Contrary to what you might expect, this makes
development easier within Rails. These constraints free you from lots of decisions that other-
wise would have to be made. Of course, many of the Rails helper scripts also depend on this
structure being there, so you deviate from it at your own risk.

These directories are automatically created when generating a new Rails application:

• app: This is where most of the application code resides. It has subdirectories for models,
views, and controllers, and also for helpers.

• components: Before the plug-in system was finished, components were the main way to
extend a Rails application. They’re now mildly deprecated, and I won’t cover them at all
in this book.

21

C H A P T E R 3

881-4 CH03.qxd 8/30/07 1:29 PM Page 21

• config: The config directory contains some pretty important files, including the one for
database configuration. It also contains the different configuration parts for separate
environments.

• db: The db directory houses all migration information for the databases.

• doc: You can generate an RDoc for your application. If you choose to do that, it will
reside in this directory.

• lib: If you create code that doesn’t fit neatly into the categories of model or controller,
you can place it in the lib directory. The lib directory is on the load path, but you need
to require the parts you need. Also, when adding new Rake tasks to your build system,
you should put the file containing the tasks in the tasks subdirectory in the lib direc-
tory, so Rake will automatically recognize it.

• log: When your application is running, all the logs will end up in this directory.

• public: Some parts of your web application need to be directly accessible without going
through the Rails call stack; for example, images and style sheets. You should put these
things in the public directory. You should also set this directory as the application root
if you’re using Apache to deploy your application. When caching is configured in your
Rails application, the cached files will end up here too.

• script: Rails depends on some helper scripts for different purposes. You can find all
of these in this directory. I’ll describe these scripts further in the section “Rails Helper
Scripts.”

• test: You can test Rails applications in many different ways. What is common for all
methods is that you should place the actual tests in this directory. The Rails Rake file
already supports much of the directory structure within, so try to make your testing
fit within the existing architecture.

• tmp: During runtime, Rails needs to create numerous temporary files. By default, these
are placed in this directory. You should never place anything you need to keep here.

• vendor: When installing plug-ins, they’ll end up in vendor/plugins. Also, if you decide
to freeze the current Rails version, all the Rails Gems will be copied to this directory.

Of all these directories, the most important ones are the app, config, test, and db directo-
ries. This is where most of the work on a Rails application takes place. Try to take a few
minutes with a newly generated application to walk through all subdirectories and see what
they contain.

Models
In Rails, the models are where the data resides. The model classes correspond more or less
directly to a database table (if you use ActiveRecord, that is). You can find all models in the
directory app/models, where each file corresponds to one model. It can be easy to create a
model. In fact, the easiest possible model could look like this, in a file named order_item.rb:

class OrderItem < ActiveRecord::Base
end

CHAPTER 3 ■ INTRODUCTION TO RAILS22

881-4 CH03.qxd 8/30/07 1:29 PM Page 22

In this case, the only thing necessary is to create a class that inherits from
ActiveRecord::Base. If you have configured a working database, and that database contains
a table named order_items, then this model will work fine. The next step would be to add
some references to other parts of your model:

class OrderItem < ActiveRecord::Base
belongs_to :order

end

belongs_to is one of the more common references that can be used. In this case, the
agreement is that the order_items table has a foreign key field called order_id that you can
use to find the Order that this OrderItem is part of. Correspondingly, the Order model could
look like this:

class Order < ActiveRecord::Base
has_many :order_items
has_one :shipping_address, :class_name => 'Address'

end

As you can see, in this way you can use one model object (Address) with a different name
in a model. This allows you to use a generic model object such as Address in several different
parts of your application, if need be.

Models also contain validation information. For example, take the Address model refer-
enced earlier:

class Address < ActiveRecord::Base
belongs_to :order
validates_presence_of :country, :zip
validates_numericality_of :zip

end

This simply says that an Address needs to contain country and ZIP code information, and
a ZIP code needs to be only digits to be a valid ZIP code. There are many kinds of validators,
and you can also write your own.

Defining models is one thing, but you also need to know how to use them. Mostly, it’s
intuitive. For example, say you want to find all orders:

Order.find :all

Or, say you have an ID for an order and want to get that instance:

Order.find 123

Or, say you have an order instance called o and you want to create a new address that
references this order:

Address.create :order => o, :country => 'Sweden',
:zip => '12559'

This was a small introduction to models with ActiveRecord. I’ll expand on most of this
information in later chapters.

CHAPTER 3 ■ INTRODUCTION TO RAILS 23

881-4 CH03.qxd 8/30/07 1:29 PM Page 23

Controllers
The controller is the part of your application that first sees a request. The controller decides
which models to use, how to use them, and also which view to render. Controller code is usu-
ally simple to write when following the Rails conventions. If you have to do something
different, things can get more complicated, though.

A Rails controller is a class that can be found in app/controllers, and controllers follow
a specific naming scheme. Specifically, a controller should be called SomethingController and
exist in a file called something_controller.rb. If you follow this convention, that controller’s
actions will by default be available under the /something/action URL. You can change this by
editing the file config/routes.rb, but it’s a useful convention to stick to. If there is no action
named in the URL, the default action name will be index. This is a neat thing in Rails: all pub-
lic methods in a controller are an action. So, you could create a simple controller that displays
the view named index.rhtml like this:

class FooController < ApplicationController
def index
end

end

If you don’t specify a view to render, by default Rails will use one with the same name as
the action. However, you can also specify one explicitly:

class FooController < ApplicationController
def index
render :action => 'bar'

end
end

The ApplicationController class is something Rails provides for free. You can find it in
the app/controllers/application.rb file, and it’s useful to change this file to add things to all
controllers.

There isn’t much to tell about controllers. Except for specifying which view should be ren-
dered, you can also provide data to the view. This is best done by setting instance variables to
the values you want the view to have. With some trickery, Rails copies all instance variables
from the current controller to the view that should be rendered. So, you can give a view some
much-needed data by doing it like this:

class FooController < ApplicationController
def index
@products = Product.find :all
@title = "All the Products in the World"

end
end

Another useful thing you can do with controllers is to use filters. You can specify that
some code should be executed before, after, or around every action. This allows you to achieve
authentication and authorization quite easily, but you can also add encryption, compression,
or many other things to your application in this way. Filters will be covered later in the book,
when we look at implementing authentication for Rails applications.

CHAPTER 3 ■ INTRODUCTION TO RAILS24

881-4 CH03.qxd 8/30/07 1:29 PM Page 24

Views
The view is the part that generates HTML (or XML, or JavaScript, or anything else really). In
Rails, the standard way of doing this templating is called ERb, and the standard file extension
is RHTML. There are also a few other ways of doing this, but ERb is the method I’ll use in this
book.

The Rails view templates live in the app/views/{controllername}/ directory. That means,
if our controller is named FooController, the index view will be found in
app/views/foo/index.rhtml. Most of an RHTML file is regular HTML, but parts enclosed in
<% %> and <%= %> blocks are evaluated as Ruby code. As I mentioned in the section on con-
trollers, all instance variables from the controller will be available in the view too. So, say this
fragment is in the index.rhtml file for the FooController specified earlier:

<head>
<title><%= @title %></title>

</head>

Then, this would be what was returned to the browser:

<head>
<title>All the Products in the World</title>

</head>

That’s more or less it for the views. They aren’t complicated. In the basic case it’s simple
to generate the dynamic code you need inside the confines of regular HTML. Rails does give
you helpers for many tasks. For example, you should never write your own <FORM> tag, because
there are many things to keep in mind, and you’ll have lots of pieces to change if you switch
URL schemes or something like that. For example, say you want to have a button that posts
some information to your server. You could use the helper button_to like this:

Press this button:
<%= button_to "Press Me", :action => 'button_press' %>

This generates a small form with a button that when pressed does a POST to the URL
corresponding to the current controller, but with the action button_press. There are many
helpers in Rails; I’ll introduce them as we go.

Layouts
If you want to have a common style on more than one page of your application it can be a
good idea to consider creating a layout. By default, a layout is found in app/views/layouts/,
and it should have the same name as the controller under execution for it to be loaded
automatically. For example, you should call the layout for FooController app/views/layouts/
foo.rb. This file could contain the HTML header and footer, a menu, and everything else that
should be shared in many views. You mark the place where Rails should insert the real view by
calling yield inside an output block, like this:

<%= yield %>

CHAPTER 3 ■ INTRODUCTION TO RAILS 25

881-4 CH03.qxd 8/30/07 1:29 PM Page 25

This outputs the dynamically generated data from the real view at that place. If, for some
reason, you would like to have the content duplicated, you shouldn’t call yield twice. Instead,
save the output from the first yield and print it two times:

<% content = yield %>
ABC:
<%= content %>
CDE:
<%= content %>

If you want to have the same layout for more than one controller, you can specify a specific
layout inside your controller:

class FooController < ApplicationController
layout "bar"

end

For all actions in FooController, the file bar.rhtml is used as a layout, instead of the
default foo.rhtml.

Partials
You’ll often find yourself needing certain blocks of code over and over again. For example, say
you always want to print product details the same way. You could copy and paste this in all the
places you need it, but that wouldn’t be DRY. So, for these cases you have access to partials.
A partial should be in the same directory as the view using it (but you can use partials from
other controllers too). You should name it with an underscore (_) before the name to differen-
tiate it from real views. So, you could have a partial that’s named _product.rhtml and looks
like this:

<p><%= product.name %> $<%= product.price %></p>

You could use it from a view in this manner:

Your choice: <%= render :partial => 'product', :locals =>
{:product => @prod} %>

We need to explicitly import the product to use by giving the locals parameter to the call.
This gives us some flexibility, though. For example, say that we had several products in a list
called @products and we wanted these rendered the same way. We could do that with the same
partial:

Products:

<%= render :partial => 'product', :collection => @products %>

The partial is called once for each item in the collection, and the current object is set to
a local variable with the same name as the partial itself.

Partials are incredibly useful for allowing great code reuse. You should use them as much
as possible, especially later, when we start talking about how to use Ajax to re-render only
parts of a page.

CHAPTER 3 ■ INTRODUCTION TO RAILS26

881-4 CH03.qxd 8/30/07 1:29 PM Page 26

CHAPTER 3 ■ INTRODUCTION TO RAILS 27

THE MVC PATTERN

Rails is a pure implementation of the Model-View-Controller (MVC) design pattern. This pattern first origi-
nated in the Smalltalk world but is now widespread (and is known under the name Model-2 in the Sun
parlance). The pattern has been implemented hundreds of times in several different kinds of applications, but
it shines most in those situations where you can cleanly delineate the user interface from the data back end,
and the main purpose of the interface is to present massive amounts of data to the user.

The pattern was first described in 1979 by Trygve Reenskaug, then working on Smalltalk at Xerox labs. His
implementation of the pattern is described in depth in a well-read paper called “Applications Programming in
Smalltalk-80: How to use Model-View-Controller” by Steve Burbeck. Many other systems have been inspired by
this original implementation, including parts of Cocoa for Mac OS X, Java Swing, Microsoft Foundation Classes
(MFC), and the Qt toolkit. Apart from these, the pattern is heavily used in many web systems.

The basic idea in MVC is that you divide the responsibility into three parts: the model, the view, and the
controller. Each part should be more or less self contained, meaning that a change in the view system should
not have any impact on the model or controller logic. As a typical benefit, if you code a Java Swing applica-
tion in a typical MVC architecture, you would only need to change the view logic to port this functionality to
a web interface. Of course, this ideal will almost never be purely realized, but it’s still useful to design your
application with this separation of concerns in mind.

The model is where the domain-specific representation of data resides. This layer is also known as the
domain layer. The model objects should be composed of all raw data the application needs, with domain logic
added to this. A typical example of model objects can be Product, Order, and Customer. If the application
needs persistence of some kind, this will also be a part of the model layer. The view and controller should
ideally not need to know anything about databases or other forms of persistence.

The controller is responsible for providing the view with all data that should be available for the current
event. The controller reacts to events by evaluating them and then updating the view as a response. Con-
trollers are commonly divided into separate actions, where any one action corresponds to a specific event.
For example, in the Java framework Struts, you never write a controller; you just provide different actions for
different URLs. The real controller is one big class that dispatches to the different actions and provides differ-
ent services to the system.

The view renders the model information and the data provided by the controller in a suitable form for
the current request. The view displays user interaction elements, and in a typical web application it corre-
sponds neatly to the code that directly generates HTML. The ideal view doesn’t contain any logic at all, but
only displays the information that is available to it.

The MVC pattern is easy to see in the Rails framework. Most of the components are named in such a
way that they correspond directly to the different parts of the pattern. For example, model objects in Rails
map neatly to the M in MVC, by handling database communication, validation, and internal logic. Controller
classes map to the C in MVC, and each public method in a controller corresponds to a separate action.
Finally, there is one separate view—which is an RHTML file—for each distinct action, unless you override
the rendering logic. All pieces are there.

When coding an application with Rails it is important to follow this separation of concerns in your own
code too. If you don’t, many of the benefits you can get from Rails will be void. In real terms, this is simple:
never write any code in the view templates that contains business logic in any way. If you find yourself using
much code in RHTML, be suspicious. It’s not always a sign that something is bad, but it could be. If you need
lots of presentation logic, try to abstract it and put it into helper methods. By the same token, try to refactor
all logic that concerns the model into the model classes. Make your controllers as clean as possible. Look at
the code generated for scaffolds for examples of how to write controller logic that only contains what’s

881-4 CH03.qxd 8/30/07 1:29 PM Page 27

necessary for the controller. Finally, any view information should not be found in the model objects. This is
probably one of the few things I object to in the Rails framework. Validation messages are usually placed
inside the model objects, together with the rest of the validation rules. However, because this is view infor-
mation, it’s certainly not the right place for it. Keep this in mind, especially when trying to create something
that should be used in more than one language.

Much of the power of Rails comes from MVC and the relentless use of it. Don’t let that get wasted.

The Other Parts of Rails
Rails is divided into several smaller packages, each more or less self sufficient. ActiveRecord
is the component used for the models; ActionPack contains ActionController and ActionView,
which are the controller and view parts, respectively. The package Rails (previously called
Railties) contains the code that pulls all these parts together. That isn’t everything, though—
Rails contains several more packages.

ActiveSupport
ActiveSupport’s main purpose is to add several helpful extensions to different parts of the
Ruby core. It contains core extensions and new utility classes that aren’t Rails specific, but
that Rails needs to make life easier for the developer. For example, it contains the class
HashWithIndifferentAccess, which lets you index into a hash with a symbol or a string, and
you’ll get the “right” value back regardless of which you choose.

ActiveSupport adds many methods to the core classes. The time and date utilities are
especially helpful. When ActiveSupport is loaded, you can write things such as 2.days.ago
or Time.today + 2.hours + 14.minutes, and get something back that does what you want.

Probably the best thing that ActiveSupport provides is called the to_proc hack. It adds
a to_proc method to the Symbol class. The utility of this is that some common iteration scenar-
ios in Ruby will be much more succinct. Thanks to this, instead of writing

%w(abc cde efg).map {|v| v.inspect}

you can write

%w(abc cde efg).map &:inspect

This makes code much easier to read. Refer to Appendix A for a small explanation of how
this works.

ActionMailer
The ActionMailer package makes it simple to create templates for sending mail, by using
much the same view techniques that regular Rails views provide. If you need to send mail
with a predetermined format, ActionMailer is probably the best way to do it.

CHAPTER 3 ■ INTRODUCTION TO RAILS28

881-4 CH03.qxd 8/30/07 1:29 PM Page 28

ActionWebService
The new rage in Rails and web applications with regard to web services is called Representa-
tional State Transfer (REST). The base idea is that you use regular HTTP calls with human-
readable URLs to provide the most common operations. You use the different HTTP methods
(such as GET, POST, PUT, DELETE, and so on) to provide different operations on the same address,
and in the request you provide just the information needed, in a simple XML or YAML format.
This makes web services much less painful than they currently are with Simple Object Access
Protocol (SOAP) and Web Services Description Language (WSDL). ActionWebService helps you
develop clients for such services easily in Rails. Because Rails already has good support for easy
URLs, and also makes it easy to do different things depending on which HTTP method is used,
Rails has become one of the best ways available with which to implement REST services.

ActiveResource
ActiveResource is not a part of Rails at the time of writing, but will probably be released when
you’re reading this. The purpose is to take the REST architecture of Rails one step further by
providing easy ways to expose web services transparently. This is accomplished by using the
same MVC code that regular Rails uses. Because Service Oriented Architecture (SOA) is hailed
as the future of application development, this could well provide another sweet spot for Rails
applications.

Rails Helper Scripts
Ruby’s first major philosophy point is DRY: Don’t Repeat Yourself. This shines through the
Rails framework in many ways. One of the ways Rails makes your life simpler as a developer is
by providing several scripts that help you with different tasks in the development of an appli-
cation. I’ll guide you through the scripts that can be found in the script directory of a newly
generated Rails application. Some of these you won’t use often; some will be totally indispen-
sable. I won’t describe Rake tasks used for different tasks here, though, because they have a
slightly different purpose.

about
If you create a new Rails application, start a WEBrick instance, and point your browser to
http://localhost:3000/, you’ll see a page describing your application. The about script pro-
vides exactly the same information. It prints the versions of Ruby, RubyGems, and Rails (and
all dependent packages). It also prints which environment is used, the database, and which
migration version number the application is currently at. As such, it can be useful debug
information.

breakpointer
The breakpoint library in Ruby allows you to call a method at an arbitrary point of your code.
If you run this program locally, outside of Rails, this will open up an Interactive Ruby (IRB)
instance that lets you debug the application at the point of the breakpoint. But if you use such
a breakpoint in a Rails application, something else happens. Because most Rails applications

CHAPTER 3 ■ INTRODUCTION TO RAILS 29

881-4 CH03.qxd 8/30/07 1:29 PM Page 29

don’t have a natural place to dump you into an IRB, the application won’t do that. Instead,
Rails will provide a breakpoint server. The breakpointer script lets you attach to such a break-
point server (it works remotely too), and when the application hits a breakpoint you get an
IRB session into it. Quite neat, and very useful.

console
This script lets you start up an IRB console with the current Rails application loaded. You have
access to your model objects, all Rails helpers, and much more. You can use this script to test
how you think some method in ActiveRecord will work, or almost anything else you can think
of. When I create a new Rails application, I usually make sure always to have a console started,
because it’s so easy to test things out. You can also use it to check on the data in the database.
Because you can execute arbitrary SQL through a model object, this means you can do mostly
anything you want.

destroy
The destroy script is the negative counterpart of the generate script, described next. It’s
generic and uses a generator class to remove something that has been created by the generate
script. It won’t remove things you have changed, only unchanged files and code. However, it
can be handy to have, because the generate script creates many files in different places.

generate
The generate script is one of the most important scripts for DRY in Rails. The purpose is to
allow you to autogenerate as much code as possible. As such, it doesn’t do anything you
couldn’t do by hand, but remembering everything you should add when creating a new model
quickly becomes tedious. The generate script is also generic, which means you can install new
generators that can generate your own custom code. The most-used generators are probably
the model, the controller, and the scaffold generators.

The model generator creates a new empty model file, a new migration file for this model,
and several test files where you can add your own test code. The controller creates a simple
controller file and corresponding tests. Scaffolding creates a new controller and views that
give access to CRUD operations for an existing model. It’s useful as a base for further code,
especially for administrative interfaces. You’ll use this approach with the Shoplet application
in the next chapter.

plugin
Rails’ plug-in mechanism is very powerful (and one of the main methods the core Rails team
uses to test new features). This script is the portal to all plug-in goodness. You use it to install
new plug-ins and remove old ones. You can also use the script to extract parts of an existing
code base into a plug-in. The most common usage is to install a new plug-in, possibly through
the -x flag (that only works if you store your Rails application in a Subversion repository—
which you should), which links directly to the version control repository for the plug-in you
want to install. Very handy.

CHAPTER 3 ■ INTRODUCTION TO RAILS30

881-4 CH03.qxd 8/30/07 1:29 PM Page 30

runner
Sometimes you need to run a bit of code within the context of a Rails application without hav-
ing to start an IRB console. In those cases, the runner allows you to execute an arbitrary piece
of Ruby code, written on the command line. One of the more regular uses of this mechanism
is to add a crontab entry to clean old sessions from the ActiveRecord store by running a com-
mand with runner.

server
You most commonly use the server script to start up your application and try it out. It starts
up a standalone Rails instance listening on port 3000. The default is to start WEBrick, but if
you have Mongrel or lighttpd installed, the script will use one of them instead. In production,
the server script isn’t usually used, because there are better ways to deploy a Rails application.
However, the server script works fine for development, especially when you need to restart
your application often.

RAILS VS. OTHER WEB FRAMEWORKS

There are hundreds, if not thousands of web frameworks in different languages. Some people consider it a
good task to learn a programming language better so you can implement your own framework. In that
respect it would be hard to compare Rails to other frameworks. However, I’ll still try to describe the most
popular frameworks in several different languages and also contrast them against Rails. Some would say that
such a comparison will always be subjective. I won’t argue with that; these are my personal thoughts about
the closest competitors to Rails.

Struts (Java)

Struts is arguably the number one web framework used with Java. It doesn’t usually sit alone, though. The
most common situation is probably Struts combined with Tiles and Hibernate. That’s the scenario I’ll consider
here, because the different parts neatly match against the letters in MVC. This is also the first major differ-
ence between Struts and Rails. Struts doesn’t provide MVC functionality at all; it just gives you the controller
part. Tiles is easy to get going with Struts, but it’s not part of the framework and also needs separate configu-
ration. Configuration is also the part of Struts that can be quite painful. You gain lots of flexibility, but at the
same time you need to keep numerous XML files up to date.

Rails configuration is basically guesswork unless you want to provide something substantial to it. Only
one configuration item is needed to get Rails working, and that is the database parameters.

The model is the big difference between Struts and Rails, though. The only part of the model that is avail-
able within Struts is validation, and this also requires some configuration to get going. Using Hibernate gives you
much flexibility, and you can do some things with Hibernate that are hard to achieve with ActiveRecord in Rails.
This flexibility comes at the cost of another configuration file. You also need to create model classes (or auto-
generate them once and work from there), which contain getters and setters for attributes. It is in the model that
the cost of a statically typed, compiled language gets in the way of rapidly getting something working.

In summary, Struts gives you much flexibility, but the cost of getting started is much higher. Maintenance
also suffers, because there is just much more code and configuration.

CHAPTER 3 ■ INTRODUCTION TO RAILS 31

881-4 CH03.qxd 8/30/07 1:29 PM Page 31

Django (Python)

Django is, on many levels, very similar to Rails. The big difference between the two frameworks is first and
foremost one of philosophy, and this difference hails more from the respective languages than from any
explicit design choice the creators have made in the software.

There is also a difference in feel. Django seems more aimed at web publishing applications, while Rails
is well suited for generic web application development. Django ships with some things out of the box that
Rails doesn’t contain. For example, a built-in authentication system comes with Django, but not with Rails.

Another difference is how Django places all information about models in one place. Python code defines
the database tables, and this is generated from the same place that defines the attributes on a model object.
In Rails you define migrations for your models in Ruby, and then the attributes in the database are available
to your model object without you having to specify them. These are two slightly different approaches, but in
the end which one you choose doesn’t matter much.

In summary, the big difference between the frameworks is in style and feeling, rather than functionality.
They are both perfectly satisfactory for most web tasks. However, if you want Ajax, Rails will probably give
you a big head start. Also, Rails runs on the JVM, but Django does not.

Seaside (Smalltalk)

It’s hard to compare Seaside with Rails, because they embody completely different design and architectural
decisions. Seaside is a web framework based on continuations. Now, the thing that makes Seaside such an
interesting framework is that it inverts the usual way of writing a web application. Instead of having small
separate parts of functionality that trigger at different points in the life cycle of a web interaction, and main-
taining state by saving away small nuggets of information indexed by data in client cookies, Seaside lets you
write your web application more or less in the same style as you would write a regular command-line appli-
cation. You start up, initiating everything, then loop and let the customers specify products they want to order.
Then, when that part is finished you go ahead by asking which delivery address they want the order sent to,
and so on.

In reality, Seaside works the same way as all other web applications, under the covers. However, this
part of the system is hidden from the person using the framework. Most of the complexity of maintaining
state is managed by saving continuations at strategic points of the execution that can be resumed at any
time, or discarded.

Seaside doesn’t contain explicit support for a database or model layer. The developer has to add this.
In the same manner, Seaside doesn’t contain a separate templating system for easily creating HTML views.
Instead, you write Smalltalk code that generates HTML. In some situations this flexibility can be good, but in
other cases—especially when creating larger applications—this makes it hard to let a designer generate the
HTML design for you and then integrate it into the application.

So, Seaside is good at several things that almost no other framework handles well, but other detriments
make Rails a more widely useful full-stack solution for web applications.

PHP

There are certainly many frameworks for PHP that I could compare Rails against, but Ruby on Rails sits more
or less in the exact same spot that PHP has traditionally occupied. The big difference is that Rails scales bet-
ter and provides more benefits. With PHP, you first need to choose a framework that gives you some kind of

CHAPTER 3 ■ INTRODUCTION TO RAILS32

881-4 CH03.qxd 8/30/07 1:29 PM Page 32

Object-Relational mapping. For small sites, you could use SQL directly, but that would be far from MVC, and
as I said earlier, not scalable. Zend (the company behind PHP) has announced the Zend Framework, aimed at
competing with Rails and providing some of the features that are missing (or hard to use) in a regular PHP
installation.

PHP is good for a few reasons, though. It’s widely available. It’s easy to learn and many people know it
already. It’s designed specifically to be a web language. However, this is also a weakness, because it isn’t a
general-purpose language like Ruby. Sometimes PHP doesn’t feel object-oriented enough, and it can be hard
to abstract functionality.

The big problem compared to Rails is that there is no difference between the view and the other places.
There’s never an overarching controller. Everything is file based. This makes a PHP project simple to start but
hard to continue working with.

So, in summary, if you want one or two pages that fetch data from a database, you can probably do it
faster with PHP than Rails, but that’s about it.

Testing
One of the strengths of Rails is that it makes testing easy and natural. You can run your tests
often, and the testing is an integral part of the application. I won’t talk specifically about how
to write the tests here, but instead will describe the different kinds of tests available to you,
and where they live.

First, to start testing, just run rake in your application directory. That runs all unit tests
you’ve written. That’s the first and best way to test.

As you can see, if you check in the test directory of a new application, Rails comes with
several versions of tests. The directories found here are fixtures, functional, integration,
mocks, and unit. However, only the functional, integration, and unit directories contain
tests. In the fixtures directory, you’ll define data fixtures for your models, so that the tests you
write can have a consistent and dependable basis for testing. In the same way, the mocks direc-
tory contains fake implementations of real parts of your application. The canonical example is
the credit card payment service. You don’t want to talk with a payment gateway each time you
run tests, so instead you create a mock of this service code, which generates implementations
of the interesting methods that return predetermined values.

In Rails, unit tests have the explicit responsibility to test the model. There should be one
file in the unit directory for each model you’ve created, and if you’ve used the generators to
create them (as you should), these files will have been created automatically.

A typical unit test looks much like a regular Test::Unit test case, except that Rails unit
tests can specify a fixture to use. You can use more than one fixture in the same test case, but
the way Rails generates your test files, you’ll get one separate fixture for each test case file.

Functional tests—in contrast to unit tests—should test controllers. They’re usually written
at a higher level than unit tests, because the functionality of models is a part of the functioning
of the controllers. The best way to see how to write simple functional tests is to generate a scaf-
fold controller and read the code for the generated functional test. As you can see in Listing 3-1,
the language is high level, and looks more like a DSL for testing than regular Ruby code.

CHAPTER 3 ■ INTRODUCTION TO RAILS 33

881-4 CH03.qxd 8/30/07 1:29 PM Page 33

Listing 3-1. Parts of Functional Test Code for a User Controller

class UsersControllerTest < Test::Unit::TestCase
fixtures :users

def setup
@controller = UsersController.new
@request = ActionController::TestRequest.new
@response = ActionController::TestResponse.new

end

def test_index
get :index
assert_response :success
assert_template 'list'

end

def test_list
get :list

assert_response :success
assert_template 'list'

assert_not_nil assigns(:users)
end

def test_show
get :show, :id => 1

assert_response :success
assert_template 'show'

assert_not_nil assigns(:user)
assert assigns(:user).valid?

end

def test_new
get :new

assert_response :success
assert_template 'new'

assert_not_nil assigns(:user)
end

end

CHAPTER 3 ■ INTRODUCTION TO RAILS34

881-4 CH03.qxd 8/30/07 1:29 PM Page 34

Integration tests, finally, are even higher than functional tests. The purpose is to test the
flow through an application. As such, this kind of testing uses operations that resemble the
actions that a user will execute while using the application, rather than going behind the
covers, on the bare metal, like functional and unit tests. In the integration test, you send in
requests, check the response, follow redirects, fill in form information, and so on.

All in all, these three versions of testing let you have good control over your application’s
behavior, and it also makes it easy to test against regression. As such, testing should always be
written concurrently while writing the implementation code. Alas, due to space constraints,
this book won’t contain much testing information. This will be part of the downloadable com-
plete code, and I’ll also show you how to test your first application with unit and functional
tests. However, the rest of the projects won’t have tests written for them in this book.

Plug-Ins
Rails sports an easy-to-use plug-in system. It allows you to extend and replace functionality in
any part of the core system, or add completely new capabilities. There’s some debate going on
as to whether there should be a separate plug-in mechanism from RubyGems. That’s because
you can do almost everything with RubyGems that you can do with plug-ins, and Gems also
gives you some extra features. My own opinion is that it can be useful to associate plug-ins
with a specific Rails application. If you install a Gem, it will be available to all Ruby applica-
tions in the system. It’s also easier to develop a plug-in without some of the overhead that a
Gem requires.

The way to work with plug-ins is through the script/plugin script. With it, you can list all
available plug-ins, and install, update, and remove plug-ins. To get more information about
how the script works, just run it without parameters.

Some plug-ins are more useful than others. These are my picks of a few that have proven
handy from time to time.

Acts As Taggable
This simple plug-in adds the class method acts_as_taggable to ActiveRecord. If you mark
a model class with this method, each instance of that model can be associated with tags.
The plug-in also gives you ways to search on tags.

CAS Filter
If your organization uses Central Authentication Server (CAS), which is a common protocol
for centralized authentication and single sign-on, this filter allows you to add authentication
easily to your application. You have the choice to protect only parts of the application, or
everything.

Globalize Plug-In
This plug-in adds transparent translation of both models and views. Because Rails currently
doesn’t handle internationalization that well, something like this plug-in is much needed if
you want to do development outside the United States. Globalize provides localization of
numbers, dates, and currencies, and helps with translation.

CHAPTER 3 ■ INTRODUCTION TO RAILS 35

881-4 CH03.qxd 8/30/07 1:29 PM Page 35

Rails Engines
This plug-in is a little bit different, in that it doesn’t add anything by itself. Instead, it adds more
specialized plug-in functionality. In the parlance of engines, you can install a Login Engine, or a
User Engine, or something else, and these engines provide a full chunk of more-or-less finished
functionality that you can use or modify. The idea is that these engines won’t affect the existing
code at all, and they are aimed at being fully featured, vertical, MVC solutions.

Summary
As you can see, Rails is a fairly complex beast, comprised of several interacting parts. As such,
this chapter has given you a cursory introduction to all the important parts. However, there’s
still much to learn. Instead of taking the components on separately, in the next chapter we’ll
start building an application, using most of the parts of a typical Rails application. In this way
it will be easier to see how all the parts fit together.

The creators of Rails often say that Rails is “opinionated software.” This is manifest in
many ways, but the most important way is that you should follow specific paths when creating
an application. You can deviate from them, but the framework benefits you most while follow-
ing the rails. The purpose of the next few chapters is foremost to show you how a Rails
application should be developed. The only differences here are that the application will be
backed by a database accessed through JDBC, rather than through a native database driver,
and that we’ll run it with JRuby instead of Ruby.

CHAPTER 3 ■ INTRODUCTION TO RAILS36

881-4 CH03.qxd 8/30/07 1:29 PM Page 36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

