
Store Administration

This chapter will walk you through the first part of the Shoplet application. It will be a fairly
detailed look at most of the code necessary, and as such will give you a good overview of
what’s required to create a Rails application from scratch.

The Shoplet application is a basic web shop. It lets customers look through different prod-
ucts in an inventory, partitioned by type and categorized. Customers can add products to their
shopping cart and later check out, and order the products in question. Payment is by billing
address, because implementing the handling for a payment gateway is out of this chapter’s
scope.

The second part of the Shoplet application is the administrative user interface. This part
is protected by username and password, and it’s possible for currently authenticated users to
add new ones. The administrative tasks that we’ll create include adding, removing, and editing
products, and handling orders.

Because most of the administrative user interface is easy to create from the basis of scaf-
folding, that’s what I’ll show you first. The customer part of the Shoplet system is covered in
the first part of the next chapter.

As mentioned in the last chapter, I’ll show some test code, but not nearly as much as
would be necessary in a real application. The same thing is true with regards to validation in
models. I’ll add enough of these to show how it works, but not all parts of the model will be
validated in a way that would be necessary in a deployed application.

Also note that the instructions from here on require that you have set up your environ-
ment in the way described in Chapter 2. The commands will be shown in a Linux
environment, but should be trivial to translate into the Windows or Mac OS counterparts.

Creating a New Rails Application
The first step to create a new Rails application is to go to the directory where the new applica-
tion will live, and then execute the rails command with the name of the application to create
as a single argument. In this case, you’ll do it like this:

jruby -S rails shoplet

37

C H A P T E R 4

881-4 CH04.qxd 8/19/07 3:11 PM Page 37

This command generates 20 to 30 lines of output, telling you what files and directories it
created. On my system the first few lines look like this:

create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create components
create db

What has happened is that the rails script has created a new subdirectory called shoplet
in the current directory, which contains the standard structure of a Rails application
(described further in Chapter 3). With just one small adjustment, this will be a functional
(but not very useful) Rails application that can be run with a web server and executed by
visiting the correct address with a browser.

The next step requires that you have set up a database, as described in Chapter 2. For our
purposes, I’ll assume it’s a MySQL database on localhost. If this isn’t the way you’ve done it,
you’ll have to translate the instructions into your circumstances.

First of all, you need to create some databases in your MySQL installation. You also need
to add users with the correct privileges to access and create tables in the database. The script
in Listing 4-1 works fine on any MySQL installation.

Listing 4-1. create_shoplet_db.sql

CREATE DATABASE shoplet_dev;
CREATE DATABASE shoplet_test;
CREATE DATABASE shoplet_prod;
GRANT ALL PRIVILEGES ON shoplet_dev.* TO shoplet_dev@'%'

IDENTIFIED BY 'shoplet';
GRANT ALL PRIVILEGES ON shoplet_test.* TO shoplet_test@'%'

IDENTIFIED BY 'shoplet';
GRANT ALL PRIVILEGES ON shoplet_prod.* TO shoplet_prod@'%'

IDENTIFIED BY 'shoplet';
FLUSH PRIVILEGES;

This creates three new databases, with three corresponding users who all have the same
password. Of course, you should modify this script for your own needs, but the three data-
bases named dev, test, and prod should exist in some form, because this is one of the things
that makes Rails a joy to work with.

After you’ve created the databases, all you need to do is to configure the file config/
database.yml. There are three top-level entries in this file, called development, test, and
production. When you write in this file, you need to make sure that you don’t accidentally get
a tab character in. Try to indent using spaces instead. With the preceding settings, and the
comments removed (lines that begin with # are comments), the new Shoplet database.yml
should look like this:

CHAPTER 4 ■ STORE ADMINISTRATION38

881-4 CH04.qxd 8/19/07 3:11 PM Page 38

Listing 4-2. config/database.yml

development:
adapter: jdbc
driver: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost/shoplet_dev
username: shoplet_dev
password: shoplet

test:
adapter: jdbc
driver: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost/shoplet_test
username: shoplet_test
password: shoplet

production:
adapter: jdbc
driver: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost/shoplet_prod
username: shoplet_prod
password: shoplet

Now you’ve configured the database, which means you’re just about set to test your Rails
application for the first time. The only thing missing is a small change to the file config/
environment.rb. Just before the line that begins with Rails::Initializer, you need to add
this line:

require 'jdbc_adapter'

This makes sure that Rails will be able to use AR-JDBC as the database provider.

RAILS ENVIRONMENTS

The Rails framework consistently uses the concept of environments to control various configuration options.
These decide which runtime parameters are set, how they interact, and a few other things. There are three
different runtime environments in standard Rails. These are called development, test, and production. It’s
important to keep in mind that the three environments have separate databases and don’t share session
information.

development

The development runtime environment is the default environment where you run migrations and start a web
server. This is where you’ll most likely spend your time. This environment tries to make the development
process as easy as possible. It does this in a number of different ways. The most important one is that it
reloads most of your code on each request. This means you can change the validators in your model, and the
next time you hit the browser, the changes will be there, without having to restart the web server or Rails. In
the same way, you can change controllers and views and never have to restart.

CHAPTER 4 ■ STORE ADMINISTRATION 39

881-4 CH04.qxd 8/19/07 3:11 PM Page 39

Another difference from what you might expect is that caching isn’t turned on. The error messages are
also informative, and tell things that you should never let a user see. A third thing is that the development
environment enables the breakpoint server automatically. See Chapter 3 for more information about the
breakpointer.

test

The most important thing to remember about the test environment is that you never use it explicitly. When-
ever you run any tests in Rails, the test environment is used, but you shouldn’t specify it explicitly when
starting a Rails console or web server. To make sure everything is as Rails expects it to be when running
tests, the database in question is always re-created before each test run. So, don’t store any important data
here.

Information is cached when testing, but error messages are still on the more talkative side.

production

The production environment is where your application should run in production, simply. Caching happens, the
production database is used, and error messages are specifically written for users, not developers.

staging

The staging runtime environment doesn’t come with Rails. It’s something that many in the community wish
were there, though. Simply enough, in a real customer-developer relationship, you often find yourself in the
situation that you want to show the customer what the web site will look like, but you don’t want it to run
against the production database. There might also be other things you don’t want to have it using in this situ-
ation. So, what you do is simply add a new environment, copied from the production one. This is simple to
do; you just copy the file config/environments/production.rb to config/environments/
staging.rb, and add a new entry in config/databases.yml called staging, which describes the
database settings for this environment.

The staging environment should be as close as possible to the real production environment, without
using the same resources. In some situations there is no production database to clobber, and in that case
you won’t need the staging environment. However, in most real deployment scenarios there are always
things going wrong, and this solution works well.

Running with Mongrel
When the time comes to test your application, you’ll need to start it up in some way. For now,
we won’t look at the more advanced deployment options available, but instead I’ll show you
the simplest way possible to get something started. As you might have guessed, the support
for this is already available within Rails. In Chapter 3 I mentioned the server script, and you
can use that to start a number of different web servers. By default, Rails starts WEBrick, but
if you have installed Mongrel, Rails will use it instead. To just run everything, execute this
command:

jruby script/server

CHAPTER 4 ■ STORE ADMINISTRATION40

881-4 CH04.qxd 8/19/07 3:11 PM Page 40

If you have configured the database correctly, and there are no exceptional errors in your
code that would make everything crash during startup, you’ll see some startup messages from
Mongrel, telling you that it has started and is listening on port 3000. So, just point your web
browser at http://localhost:3000/ and you should see be able to see the Rails status page.

The server script takes several parameters. The two most interesting are -e and -p. With -p
you can set which port Mongrel should listen on, and with -e you can specify that Mongrel should
start with another runtime environment than the default (which is development).

From now on you should just leave Mongrel running in the background so you can check
your results easily, whenever you have changed anything.

Of course, if you’d like to try running with WEBrick, or any other web server, you can do
that by naming it on the command line like this:

jruby script/server webrick

If Rails can find the web server, it will start using that instead.

A First Model
After you’ve generated the new application and tested that your database configuration is
sound by starting up the web server, it’s time to create the first parts of your model. You’ll cre-
ate three different model classes here, define their relationship, and then create the migrations
for them. You’ll generate the models associated with products first, because that’s the first part
of the administrative user interface you’ll create. I’ve decided to name the models Product,
ProductType, and ProductCategory. These names are important to remember, because Rails
has some guidelines regarding how to translate a model name into a database table.

Product Type
First of all, you’ll create the model called ProductType, because it doesn’t have any dependen-
cies on other models. Each Product will have one type, and each ProductCategory will also
have one type, so these depend on the type being there.

To create a new model, you use the model generator, like this (in the root directory of the
Shoplet application):

jruby script/generate model ProductType

This creates several files and also prints some output. It should look like this:

exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/product_type.rb
create test/unit/product_type_test.rb
create test/fixtures/product_types.yml
create db/migrate
create db/migrate/001_create_product_types.rb

Now, as mentioned before, all model code resides in the directory app/models. A file called
product_type.rb now exists in that directory. However, because the ProductType is a simple

CHAPTER 4 ■ STORE ADMINISTRATION 41

881-4 CH04.qxd 8/19/07 3:11 PM Page 41

model object, you won’t add anything to it right now. It’s fine as it is. You do need to define the
migration for ProductType, and decide which fields it should contain. The way to do that is to
open the file called db/migrate/001_create_product_types.rb in a text editor. Right now that
file is quite sparse, because you haven’t added any content to it. So, right now it will create a
table with one column called id in it, and that’s it. A ProductType should probably contain
some information, at least. Right now, you only need a name, and that’s easy to add because
Rails has added a name definition in a comment. So, remove the pound sign and you have all
the table definitions you need for a ProductType.

But that’s not all; you also need some initial data. There will never be many types in the
system, and you know already what types those should be. Further, this is part of the defini-
tion of the product types, so you should also add some code that adds three new rows to the
product_types table. The easiest way to do this is to use ActiveRecord. The final code for the
file 001_create_product_types.rb should look like this:

class CreateProductTypes < ActiveRecord::Migration
class ProductType < ActiveRecord::Base; end

def self.up
create_table :product_types do |t|
t.column :name, :string

end

data
end

def self.data
ProductType.create :name => 'Book'
ProductType.create :name => 'Music'
ProductType.create :name => 'Movie'

end

def self.down
drop_table :product_types

end
end

There are three differences from the code that Rails generated. First, the line defining the
name column isn’t commented out any more. Second, an inner class called ProductType is
defined that inherits from ActiveRecord::Base. The class definition is empty, but it still allows
us to access the ActiveRecord helpers later on. Third, you’ve defined a method called data, and
you call that method last in the up method. The data method creates three ProductType objects
with different names. The create method saves these directly to the database. That’s all there
is to it right now. Before showing how to make the migrations go into the database, we’ll go
through the Product and ProductCategory models and define these.

CHAPTER 4 ■ STORE ADMINISTRATION42

881-4 CH04.qxd 8/19/07 3:11 PM Page 42

Product
The next step is to create the Product model. As with the ProductType, you’ll do it with the
generate script:

jruby script/generate model Product

The output from this command looks almost exactly like the one for ProductType, so I
won’t repeat it. The migration file for products is called db/migrate/002_create_products.rb,
and you need to add some more changes to this one. A Product should have a name, a descrip-
tion, a product type, and a price. It also has zero or more categories associated with it, but
we’ll take care of those next. For the moment you’ll save the price in cents, because Rails 1.1.6
doesn’t handle decimal types in databases that well. (Also, you should never store a price as a
float or double, due to the problems with representing real numbers exactly in binary.) So,
open up the file db/migrate/002_create_products.rb and uncomment the name entry. You
should also add some new columns. The final version of the file should look like this:

class CreateProducts < ActiveRecord::Migration
def self.up
create_table :products do |t|
t.column :name, :string
t.column :description, :text
t.column :product_type_id, :integer
This price will be in cents to make it easier
It might be better to implement this using Decimal
t.column :price, :integer

end
end

def self.down
drop_table :products

end
end

As you can see, you just added entries for description, product_type_id, and price.
A comment is also in place to make it obvious why the price is an integer. After adding the
database information, you need to change some parts in the model definition. That file is
called app/models/product.rb. After the current changes it should look like this:

class Product < ActiveRecord::Base
has_and_belongs_to_many :product_categories
belongs_to :product_type

end

The directives simply say what it looks like they say. Having belongs_to means that for
every ProductType there are zero or more Products for it. Using has_and_belongs_to_many
requires us to have a join table for product_categories, and that’s what we’ll look at next.

CHAPTER 4 ■ STORE ADMINISTRATION 43

881-4 CH04.qxd 8/19/07 3:11 PM Page 43

Product Categories
As for the other model objects, you generate the base with the generator script:

jruby script/generate model ProductCategory

The migration code for product categories is slightly more involved than the other two,
because you need to do a fair number of things in it. First of all, a product category belongs
to a product type, and has a name. That means the part that defines the product_categories
table looks like this (in db/migrate/003_create_product_categories.rb):

create_table :product_categories do |t|
t.column :product_type_id, :integer
t.column :name, :string

end

You also need a data method, like the one you used for ProductType. Because
ProductCategory references ProductType, you first need to fetch those. Second, you
create some categories for each type. The data method looks like this:

def self.data
book = ProductType.find_by_name 'Book'
music = ProductType.find_by_name 'Music'
movie = ProductType.find_by_name 'Movie'

%w(Computers Mysteries
Science\ Fiction Crime).each do |v|
ProductCategory.create :product_type => book, :name => v

end

%w(Jazz World\ Music Electronic
Rock Indie Country).each do |v|
ProductCategory.create :product_type => music, :name => v

end

%w(Action Science\ Fiction Drama
Comedy Thriller).each do |v|
ProductCategory.create :product_type => movie, :name => v

end
end

However, this won’t work unless you define ProductType and ProductCategory, so that’s
what you’ll do first, before the up method:

class ProductType < ActiveRecord::Base; end
class ProductCategory < ActiveRecord::Base
belongs_to :product_type

end

Last, you also need to create the join table that connects Product and ProductCategory.
Rails has a specific naming scheme for such tables. The two tables to join should be in the

CHAPTER 4 ■ STORE ADMINISTRATION44

881-4 CH04.qxd 8/19/07 3:11 PM Page 44

name, ordered alphabetically, and joined with an underscore. In our case, the join table
should be named product_categories_products, and the definition looks like this:

#join table for products and product_categories
create_table :product_categories_products, :id => false do |t|
t.column :product_id, :integer
t.column :product_category_id, :integer

end

Because a join table should only contain the IDs for the two entries to join, you need
to tell Rails that no id column should be generated for the table. The final file for defining
ProductCategories should look like this:

class CreateProductCategories < ActiveRecord::Migration
class ProductType < ActiveRecord::Base; end
class ProductCategory < ActiveRecord::Base
belongs_to :product_type

end

def self.up
create_table :product_categories do |t|
t.column :product_type_id, :integer
t.column :name, :string

end

data

#join table for products and product_categories
create_table :product_categories_products, :id => false do |t|
t.column :product_id, :integer
t.column :product_category_id, :integer

end
end

def self.data
book = ProductType.find_by_name 'Book'
music = ProductType.find_by_name 'Music'
movie = ProductType.find_by_name 'Movie'

%w(Computers Mysteries
Science\ Fiction Crime).each do |v|
ProductCategory.create :product_type => book, :name => v

end

%w(Jazz World\ Music Electronic
Rock Indie Country).each do |v|
ProductCategory.create :product_type => music, :name => v

end

CHAPTER 4 ■ STORE ADMINISTRATION 45

881-4 CH04.qxd 8/19/07 3:11 PM Page 45

%w(Action Science\ Fiction Drama
Comedy Thriller).each do |v|
ProductCategory.create :product_type => movie, :name => v

end
end

def self.down
drop_table :product_categories_products rescue nil
drop_table :product_categories

end
end

When this migration runs, you’ll have a few different categories to choose from in every
type. The model file for ProductCategory is comparatively simple. You just define the same
relationship to ProductType and Product as you’ve already done in the corresponding models:

class ProductCategory < ActiveRecord::Base
has_and_belongs_to_many :products
belongs_to :product_type

end

Notice that you could have put a has_many :product_categories inside of
product_type.rb, if you ever were interested in going from ProductType to all product cate-
gories for that type.

Running the Migrations
You’ve defined three different migration files, mostly automatically generated by the Rails
scripts. You might have noticed that the file naming follows a simple pattern. That’s because
a database used with migrations always has a version number associated with it. From scratch,
that version number is 0. For each migration file run, the version is incremented by one.
Because migration files are run alphabetically from the db/migrate directory, it’s a good cus-
tom to name each file with the version number it will result in, even though it isn’t necessary.

So, how to go about creating the database tables for your model? It’s simple. You run rake
on the target db:migrate, and Rails takes care of the rest:

jruby -S rake db:migrate

By default, this migrates your database to the latest version present in your files. If you
want a specific version, you can specify that:

jruby -S rake rake db:migrate VERSION=2

The environment this runs in is development. At some point you should run your migra-
tions for test and production too, and that’s equally easy:

jruby -S rake db:migrate RAILS_ENV=production

CHAPTER 4 ■ STORE ADMINISTRATION46

881-4 CH04.qxd 8/19/07 3:11 PM Page 46

That’s about it for migrations at the moment. There’s more to it, but right now this will get
you started.

Validations
Normally the values that can be accepted on an attribute are constrained in one or several
ways that won’t show up in the database schema. For example, a price for a Product shouldn’t
be negative. These model constraints exist in the model class, and you’ll add a few to show
how Rails validations typically look. Validations are important, because they stop invalid data
from entering the database.

The first model is ProductType. There’s only one invariant, and that is that there should
always be a name for it. (Rails automatically caters for the id field, so you won’t have to ensure
that it exists.) Validating the presence of an attribute, where presence means it should be there,
and not be empty, is easy. You just add the validates_presence_of method to the model class.
After adding that, the file app/models/product_type.rb looks like this:

class ProductType < ActiveRecord::Base
has_many :products

validates_presence_of :name
end

You’ll also add a few validations to the Product model. First, there are a few required
attributes. These are price, name, and product_type. A Product isn’t valid without this informa-
tion. On the other hand, a Product doesn’t need a description. So, you add the validation to the
app/models/product.rb file:

validates_presence_of :price, :name, :product_type

The next part is price. Because you represent price as cents, it should be an integer, and
nothing else. You ensure that with the validates_numericality_of validator:

validates_numericality_of :price, :only_integer => true

Note the only_integer attribute. If you didn’t write that part, numericality includes real
numbers too, which you don’t want.

The next two validations are slightly more involved. You first want to check that the price
isn’t 0 and that the price isn’t negative. You should use validate_each to achieve that:

validates_each :price do |m,attr,value|
if value == 0
m.errors.add(attr,"Price can't be 0")

elsif !value.nil? && value < 0
m.errors.add(attr, "Price can't be negative")

end
end

In this validator you need to check the attribute value specifically, and also add the error
conditions by hand. The m parameter is the model object in question, so you can validate by
comparing different attributes if you want. That is also useful in the next validation, which is

CHAPTER 4 ■ STORE ADMINISTRATION 47

881-4 CH04.qxd 8/19/07 3:11 PM Page 47

a bit more complex. You want to make sure all the product_categories have the same type as
the current model object:

validates_each :product_categories do |m,attr,value|
if !value.nil? && value.any? {|v| m.product_type != v.product_type }
m.errors.add(attr, "Category can't be of another type")

end
end

You do this by using the Enumerable method any?. If any objects match the condition, you
add an error condition.

These kinds of validations are useful, and can include many important preconditions and
postconditions. Whenever you create models, you should think long and hard about what the
invariants and contracts for that object should be, and add validations that take care of the
exceptions from these contracts. As the next section talks about, you should also test that the
validations you’ve written say what you think they say.

Unit Testing Products
As mentioned in the section about testing in Chapter 3, unit tests are used to test models. I’ll
show a few tests for ProductType and Product here, but as mentioned earlier there won’t be
space enough to test everything as it should be tested. First of all, there is only one interesting
fact to test about ProductType: that name must be provided. So, open up the file
test/unit/product_type_test.rb, remove the test_truth method, and add this method
instead:

def test_invalid_name
p = ProductType.new
assert !p.valid?
assert p.errors.invalid?(:name)

end

This method first creates a new ProductType, and because you don’t specify a name, it
shouldn’t be valid. The method assert, and all methods beginning with assert_, are used to
check a certain invariant. In this method, you just check that the model object is not valid,
and that the errors provided include at least one for name.

There are more things to test for Product, though. First of all, go ahead and open the file
test/unit/product_test.rb and remove the test_truth method. The next step demands a
slight deviation into the territory of fixtures. A fixture is a YAML file that contains data for test
fixtures, which means your tests will always use the same data, instead of relying on whatever
can be found in the database at the moment. Because Products needs product types to work,
you’ll first change those fixtures. Open the file test/fixtures/product_types.yml and replace
the contents with this:

book:
id: 1
name: Book

music:
id: 2

CHAPTER 4 ■ STORE ADMINISTRATION48

881-4 CH04.qxd 8/19/07 3:11 PM Page 48

name: Music
movie:
id: 3
name: Movie

■Caution The indentation here must be done with spaces, not tabs. You’ll see errors when running the
tests otherwise.

As you might notice, this is the same type as the migrations added, but adding them here
means you can get at the objects much more easily later on. Next, you add two fixtures for
Product by replacing the contents of the file test/fixtures/products.yml with this:

first:
id: 1
product_type_id: 1
name: Abc
price: 1440

another:
id: 2
product_type_id: 2
name: Cde
price: 2990

Now you’re almost ready to add some Product testing. You just need to tell Rails that it
should use the fixtures for product types, in addition to the fixtures for Product. You can
achieve this by adding this line after the corresponding line for products, in the file
product_test.rb:

fixtures :product_types

The first test is the same as for product type, just checking that an invalid name can’t get in:

def test_invalid_name
p = Product.new
assert !p.valid?
assert p.errors.invalid?(:name)

end

You do the exact same thing for type:

def test_invalid_type
p = Product.new
assert !p.valid?
assert p.errors.invalid?(:product_type)

end

CHAPTER 4 ■ STORE ADMINISTRATION 49

881-4 CH04.qxd 8/19/07 3:11 PM Page 49

The next step is to check that invalid categories will be noticed, and that your validation
for that works:

def test_invalid_category
p = Product.new
p.product_type = product_types('book')
c = ProductCategory.create :name => 'ABC',

:product_type => product_types('music')
p.product_categories << c
assert !p.valid?
assert p.errors.invalid?(:product_categories)

end

Here you use the product type fixtures, by calling the method product_types with the
name of the fixture to fetch. In this way you conveniently create a new Product with a specific
type and add a newly created category from another type.

You need also to make absolutely sure that invalid prices can’t be set:

def test_invalid_price
p = Product.new
p.price = nil
assert !p.valid?
assert p.errors.invalid?(:price)
p = Product.new
p.price = 1.0
assert !p.valid?
assert p.errors.invalid?(:price)
p = Product.new
p.price = 0
assert !p.valid?
assert p.errors.invalid?(:price)
p = Product.new
p.price = -17
assert !p.valid?
assert p.errors.invalid?(:price)

end

This test is slightly longer because you want to try a few different invalid prices, to see that
all corner cases are covered.

These tests are all well and good, but they only test the negative side. For what it’s worth,
each of these tests would pass if something was really wrong with the system. So, what you do
is add a positive test too, where everything works as it should. If that test fails, you know some-
thing is iffy:

def test_valid_product
p = Product.new
p.price = 122
p.name = "Hello Goodbye"
p.product_type = product_types('book')

CHAPTER 4 ■ STORE ADMINISTRATION50

881-4 CH04.qxd 8/19/07 3:11 PM Page 50

assert p.valid?
end

That concludes the testing of the product family of model objects. Do add more tests if
you come up with something suitable. You can never have too many tests.

To run these tests, just execute this command:

jruby -S rake

The standard rake task runs all unit and functional tests by default. Make sure that you’ve
migrated everything in the test environment before doing this, though.

Creating a Scaffold for Products
Now that we’ve created the basis for our model, added some validations, and also made sure
that those validations work, it’s finally time to create a web interface to handle products. The
first step in such an endeavor is to create a scaffold. In Rails, a scaffold means generated code
to support the basic CRUD operations for a specific model object. We’ll begin from such a
scaffold and then change it to fit our needs. This will be the most important part of our admin-
istrative user interface.

To create the scaffolds, you use the script/generate script, like this:

jruby script/generate scaffold Product

As usual when generating something, you get some output that tells you exactly which
files have been created or modified. Now start up the web server, and visit the address
http://localhost:3000/products. If everything has gone right, you’ll see an empty listing of
products and a link to add a new one. Go ahead and explore the interface and see what you
can do. You probably won’t be able to add a new product yet, because there’s no way to choose
among the product types available yet. So, your first step is to change the addition of products
so you can get data in there.

A Rails scaffold is a controller (that can be found in app/controllers/products_
controller.rb) and a set of views, which almost always are RHTML files. To make it possible
to work with product types within the Product scaffold, you first need to open up app/
controllers/products_controller.rb. Find the method called new. It looks like this:

def new
@product = Product.new

end

You simply need to provide the ProductTypes available here. You’ll later need to add
ProductCategories too, so just chuck that in while you’re at it. The method should look like
this when you’re finished:

def new
@product = Product.new
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)

end

CHAPTER 4 ■ STORE ADMINISTRATION 51

881-4 CH04.qxd 8/19/07 3:11 PM Page 51

That is all that’s needed to provide the necessary information to the view. The scaffolds
are smart, though; Rails uses the same code that views the RHTML for adding a new product
to edit an existing product, so you’ll want to make the same change to the edit method, which
should look like this now:

def edit
@product = Product.find(params[:id])
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)

end

The next step is to alter the file called app/views/products/_form.rhtml. The underscore
means it’s a partial, and it is used from the views edit and new. You want to change this file a
little bit, so just go ahead and change the contents into this:

<%= error_messages_for 'product' %>

<!--[form:product]-->
<p><label for="product_name">Name</label>

<%= text_field 'product', 'name' %></p>

<p><label for="product_description">Description</label>

<%= text_area 'product', 'description' %></p>

<p><label for="product_product_type">Product Type</label>

<%= select 'product', 'product_type_id', @product_types.collect {|p|

[p.name, p.id] },{}%></p>

<p><label for="product_price">Price</label>

$<%= text_field_tag 'product[price]', price(@product)[1..-1] %></p>
<!--[eoform:product]-->

You’ve changed just the entries for ProductType and Price, but those are important
changes. First, the ProductType change means you can switch among the available product
types, and choose the one you want. The select helper method makes a select box with all
types in it. The price is a little trickier, though. Remember that you represent it as cents? Well,
it should be formatted in the regular format when viewed by the end user. So, you’ll add a
helper method that accomplishes this for you. The place to add this helper is in the file
app/helpers/application_helper.rb because you want all of your application to have access
to this helper. You just add these two methods to the module within:

def price(product)
money product.price

end

def money(pr)
pr ? "$%d.%02d" % pr.divmod(100) : "$0.00"

end

CHAPTER 4 ■ STORE ADMINISTRATION52

881-4 CH04.qxd 8/19/07 3:11 PM Page 52

Because you most often want to display the price with a dollar sign in front, you have to
strip out that sign when displaying the price in the box. The next step is making sure that sav-
ing these objects works too. To do this, you need to change the create and update methods.
First of all, though, you need a small helper method in the controller that allows you to handle
price more easily. So, in the end of the class, add this method declaration:

private
def intern_price
if params[:product] && params[:product][:price]
v = params[:product][:price].split('.').map(&:to_i)
params[:product][:price] = v[0]*100 + v[1]

end
end

This helper would reformat the price into cents if a price parameter was submitted. The
private in the beginning says that this method should not be available as an action on the
controller.

Next you need to change the create method to handle the new price:

def create
intern_price
@product = Product.new(params[:product])
if @product.save
flash[:notice] = 'Product was successfully created.'
redirect_to :action => 'list'

else
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)
render :action => 'new'

end
end

The other thing you added was @product_types and @product_categories, in case some-
thing goes wrong. This lets you see the original page again, with error messages attached. You
need to do the same thing with the update method:

def update
@product = Product.find(params[:id])
intern_price
if @product.update_attributes(params[:product])
flash[:notice] = 'Product was successfully updated.'
redirect_to :action => 'show', :id => @product

else
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)
render :action => 'edit'

end
end

CHAPTER 4 ■ STORE ADMINISTRATION 53

881-4 CH04.qxd 8/19/07 3:11 PM Page 53

Now you can go ahead and create a product or two. You don’t need to restart the web
server either. If everything works correctly, you should also be able to see your new products
in the list. You can edit and destroy products without trouble, too. You might note that the list-
ing of products isn’t that good right now. It shows a lengthy description, but not product type.
That should probably be changed, so we’ll take a look at that next. Now, you don’t need to
change anything in the controller to change those parts of the listing, because you have all the
data you need already. You can find the listing at app/views/products/list.rhtml, and it con-
tains a generic mechanism that walks you through the available attributes and shows these.
We’ll change it a bit:

<h1>Products</h1>

<table width="400">
<tr>
<th align="left">Name</th>
<th>Type</th>
<th>Price</th>
<th> </th>
<th> </th>

</tr>
<% for product in @products %>
<tr>
<td align="left" valign="top"><%= link_to h(product.name),

{:action => 'show', :id => product},
:class=>'productLink' %></td>

<td align="right" valign="top"><%=h product.product_type.name%></td>
<td align="right" valign="top"><%=price product %></td>
<td> </td>
<td><%= link_to 'Remove', {:action => 'destroy', :id => product},

:confirm => 'Are you sure?', :post => true %></td>
</tr>

<% end %>
</table>

<%= link_to 'Previous page',
{ :page => @product_pages.current.previous } if

@product_pages.current.previous %>
<%= link_to 'Next page',

{ :page => @product_pages.current.next } if
@product_pages.current.next %>

<%= link_to 'New product', :action => 'new' %>

As you can see, you hard code the columns, and you only display the name, type, and
price. By using the link_to helper, you make it possible to show a Product by clicking the
product name. In that way you can remove the separate edit and show links. The h helper
takes a string and returns a string where all HTML-specific characters have been encoded;

CHAPTER 4 ■ STORE ADMINISTRATION54

881-4 CH04.qxd 8/19/07 3:11 PM Page 54

it’s a good habit to always use this when displaying data. Also note that you use the price
helper here again, and that you’ve added a CSS class called productLink to the name display.
This makes it easy to add some good looks later on. While we’re working on the layout of
displaying products, let’s also fix the show page. You can find it in app/views/products/
show.rhtml, and you should turn it into something like this:

<p>Name: <%= @product.name %></p>
<p>Description:

<%= @product.description %>

</p>
<p>Price: <%= price(@product) %></p>
<p>
Product Type: <%=h @product.product_type.name %>

</p>

<%= link_to 'Edit', :action => 'edit', :id => @product %> |
<%= link_to 'Back', :action => 'list' %>

Once again, there’s nothing unexpected. You just use the price helper and show the name
of the product type.

Ajax
Our administrative user interface for products is starting to look good. Except for some CSS
styling, only one thing is missing: the product categories. These are slightly more tricky. You
want it to be possible to choose zero or more products while editing or adding a product, but
the only choices available should be the ones that match the currently selected product type.
That means you’d need to reload the page each time the product type changed. However,
there’s a better way. Ajax is the new hype word in web development. I won’t talk too much
about it here, but suffice it to say, it’s a perfect technology for the current problem. With Ajax
you can create a listener that updates just part of the page when product types have been
changed. This is ideal right now. So, how do you go about it? Well, the first step is to create a
partial. This partial will be used both by the forms on the full request, and by the Ajax call that
will update the page later on. First, create a file called app/views/products/_categories.rhtml
with this content:

<%= select_tag 'product_categories[]',
options_for_select(@product_categories.select {|p|

p.product_type.id == ((@product &&
@product.product_type) || @product_types.first).id
}.collect {|p| [p.name, p.id] },

(@product && @product.product_categories.collect(&:id)) || nil),
:multiple=>true, :size=>5 %>

It isn’t much code, but it’s slightly messy. What you do is, based on the current @product,
walk through all product categories in the system, only using those that match the product’s
product type. Add these to the select box. The next step is to collect all categories that should
be selected, which is the next parameter to the select_tag call. The next step is to use this

CHAPTER 4 ■ STORE ADMINISTRATION 55

881-4 CH04.qxd 8/19/07 3:11 PM Page 55

partial from within the forms. So, open up app/views/products/_form.rhtml again and add
this code after the part that displays the product type:

<p><label for="product_categories[]">Product Categories
</label>

<div id="categoriesSelector">
<%= render :partial => 'categories' %></div></p>

Notice that you’ve added a span that is empty, and a div tag that contains the output gen-
erated from the partial. You’ll need these two elements later on for the Ajax-y parts of the
system. But right now, you need to alter the products_controller.rb again, to make sure
everything will be saved when you save a product. This is a little bit outside the box, because
Rails doesn’t handle these multiple selections out of the box. In the create method, you need
to add this code directly after the call to Product.new:

if params[:product_categories]
@product.product_categories <<

ProductCategory.find(
params[:product_categories].collect(&:to_i))

end

This code adds all product_categories to the product, if there are any. You need to change
the update method a little bit more, because you now have to make sure validation takes place.
The new update method should look like this:

def update
@product = Product.find(params[:id])
intern_price
if @product.update_attributes(params[:product])
if params[:product_categories]
@product.product_categories = ProductCategory.find(

params[:product_categories].collect(&:to_i))
end
if @product.save
flash[:notice] = 'Product was successfully updated.'
redirect_to :action => 'show', :id => @product

end
end
if !@product.valid?
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)
render :action => 'edit'

end
end

The big difference here is that you check if the product is valid explicitly, because it can
become invalid in two different places (in update_attributes, or save). You could do this in
other ways, but that would mean you’d have to duplicate code in the method.

CHAPTER 4 ■ STORE ADMINISTRATION56

881-4 CH04.qxd 8/19/07 3:11 PM Page 56

While you’re still in the controller, you’ll add another action that the Ajax call is supposed
to use to update the partial. The method is called categories_partial and looks like this:

def categories_partial
@product = Product.find_by_id(params[:id]) || Product.new
@product.product_type = ProductType.find(params[:tp])
@product_types = ProductType.find(:all)
@product_categories = ProductCategory.find(:all)
render :partial => 'categories'

end

You need to create a dummy product for the partial to work and set the product_type cor-
rectly. After you’ve done that, you fetch the needed product types and categories, and render
the partial. Nothing strange here, really. However, now you’re slowly moving in to the part that
makes Ajax so practical. Ajax uses JavaScript to asynchronously update parts of the view.
So, what you have to do is provide a listener on the product type select box that updates the
categories partial. Once again, open up app/views/products/_form.rhtml and change the
product type parts to look like this:

<p><label for="product_product_type">Product Type</label>

<%= select 'product', 'product_type_id',

@product_types.collect {|p| [p.name, p.id] },{},
:onChange => "\$(waitOut).innerHTML=
'<i>(Updating categories, please wait...)</i>';
new Ajax.Updater('categoriesSelector','#{url_for(

:controller=>'products',:action=>'categories_partial',
:id=>@product)}?tp=' + this[this.selectedIndex].value,

{onComplete:function(){\$(waitOut).innerHTML='';
new Effect.Highlight('categoriesSelector');},

asynchronous:true});"%></p>

What you do here is a little involved. The first two rows are exactly the same. On the fourth
row, you add an onChange handler that first sets the innerHTML attribute of the span with the ID
waitOut to a text that lets the user know something is happening. The code then creates a new
Ajax.Updater that asynchronously does an HTTP request to the categories_partial action.
When completed it replaces the content of the div with the ID categoriesSelector with what
it got from the HTTP request. It also removes the “please wait” text and highlights the new
contents when they arrive.

To get all this working, you need to make a slight detour to layouts. If you remember from
Chapter 3, you can define a layout that defines the look for many pages. Because the Ajax
parts need some JavaScript included, you need to create a layout that manages this for you.
So, open the file called app/views/layouts/products.rhtml and change it to look like this:

<html>
<head>
<title>Products: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>
<%= javascript_include_tag :defaults %>

</head>

CHAPTER 4 ■ STORE ADMINISTRATION 57

881-4 CH04.qxd 8/19/07 3:11 PM Page 57

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>
</html>

The only thing you change right now is to make the view call javascript_include_tag
with an argument of :defaults. This includes all the commonly used JavaScript files needed
for Ajax to work. After you’ve made this change, go create a new product and you’ll notice that
the product categories now work. Try to change ProductType; you’ll notice that you get a mes-
sage to wait patiently, and then the product categories are updated.

This is just a small taste of what can be achieved with Ajax. We’ll look more at Web 2.0
techniques in Chapter 8. For now, you also need to update the show view to display the prod-
uct categories. This should be done in the file app/views/products/show.rhtml and is simple.
You just add this after the entry for ProductType:

<p>
Product Categories:

<% @product.product_categories.each do |cat| %>
<%=h cat.name %>

<% end %>

</p>

Adding Some Good Looks
Finally, you need to make everything look slightly more presentable. The first step is to create a
new layout called admin.rhtml that the entire administrative user interface will use. So, create
the file app/views/layouts/admin.rhtml and fill it with this code:

<html>
<head>
<title>Shoplet Online Store Administration:

<%=controller.action_name%>
<%=h params[:controller]%></title>

<%= stylesheet_link_tag 'shoplet' %>
<%= javascript_include_tag :defaults %>

</head>
<body>
<table width="100%" height="100%">
<tr>
<td width="250" class="leftMenu" align="center" valign="top">
<h2><%= link_to 'Shoplet', :controller => 'store',

:action=>'index'%></h2>
<h3><%= link_to 'Online Shopping', :controller => 'store',

:action=>'index'%></h3>

CHAPTER 4 ■ STORE ADMINISTRATION58

881-4 CH04.qxd 8/19/07 3:11 PM Page 58

<h3><%= link_to 'Administration', :controller => 'store',
:action=>'index'%></h3>

<ul style="text-align: left;">
<%= link_to 'Administrate products', {:controller =>

'products'},:class => 'adminLink' %>
<%= link_to 'Handle orders', {:controller =>

'orders'},:class => 'adminLink' %>
<%= link_to 'Authenticated users', {:controller =>

'users'},:class => 'adminLink' %>

</td>
<td class="main" valign="top">
<p style="color: green"><%= flash[:notice] %></p>
<p style="color: red"><%= flash[:error] %></p>

<%= yield %>
</td>

</tr>
</table>

</body>
</html>

Note that I’ve added some links here to controllers that you haven’t created yet. That’s
where the rest of the administrative user interface will be found. After you’ve created this file,
you need to edit products_controller.rb to use it, too. That’s easy enough. Just add this
method call on the second row:

layout "admin"

Before you try it out, you should add a new style sheet too. Create a file called
public/stylesheets/shoplet.css and fill it with this code:

body {
margin: 0px;
padding: 0px;

}

h3 {
font-size: 1em;
font-weight: bold;

}

h2 a {
text-decoration: none;
color: black;

}

CHAPTER 4 ■ STORE ADMINISTRATION 59

881-4 CH04.qxd 8/19/07 3:11 PM Page 59

h3 a {
text-decoration: none;
color: black;

}

a {
text-decoration: none;
font-weight: bold;

}

thead td {
font-weight: bold;

}

.productLink {
color: black;
font-weight: normal;

}

.adminLink {
color: black;
font-weight: normal;

}

.leftMenu {
padding-top: 20px;
border: 1px solid black;
border-left: none;
font-family: arial, sans-serif;
background-color: #CCCCEE;

}

.main {
padding: 30px;
color: dark-grey;

}

If you now update the web browser, you’ll note that everything looks many magnitudes
better. If you open up the file test/functional/products_controller_test.rb, you’ll also see
that lots of test cases have already been created for you, entirely for free. You need to modify
these slightly in some cases to accommodate the structure you’ve adopted, with price and
categories handled specially. But I’ll wait and show you how to do that when we talk about
testing the login engine we’ll write in the sections “Adding Some Authentication” and
“Functional Tests,” because that changes the functional tests a bit.

CHAPTER 4 ■ STORE ADMINISTRATION60

881-4 CH04.qxd 8/19/07 3:11 PM Page 60

More Models
Because you have more or less finished the administration side of Products, it’s time to think
about the other parts the user interface should sport. If you remember the links we added to
the layout in the end of the last section, the two parts needed will be one for order handling,
and one for user administration. I’ve modeled the order system like this: An Order has zero or
more OrderLines, and each Order is associated with a Customer. Regarding users, there will be
a User model object. You’ll begin by generating these models:

jruby script/generate model Customer
jruby script/generate model Order
jruby script/generate model OrderLine
jruby script/generate model User

After you’ve generated these models, you should open up the file db/migrate/004_cre-
ate_customers.rb and change it to look like this:

class CreateCustomers < ActiveRecord::Migration
def self.up
create_table :customers do |t|
t.column :given_name, :string
t.column :sur_name, :string

t.column :shipping_address_street, :string
t.column :shipping_address_postal, :string
t.column :shipping_address_zip, :string
t.column :shipping_address_country, :string

t.column :billing_address_street, :string
t.column :billing_address_postal, :string
t.column :billing_address_zip, :string
t.column :billing_address_country, :string

end
end

def self.down
drop_table :customers

end
end

This is arguably not such a good database design, but extending it more would take too
much focus from the core you need for the current project. The Order model that you find in
db/migrate/005_create_orders.rb should look like this:

class CreateOrders < ActiveRecord::Migration
def self.up
create_table :orders do |t|
t.column :customer_id, :integer
t.column :time, :timestamp
t.column :status, :string

CHAPTER 4 ■ STORE ADMINISTRATION 61

881-4 CH04.qxd 8/19/07 3:11 PM Page 61

end
end

def self.down
drop_table :orders

end
end

This is all you need to specify an order. You want to know the customer information, the
time the order happened, and if it has been handled or not. The file
db/migrate/006_create_order_lines.rb contains the database definitions for OrderLine:

class CreateOrderLines < ActiveRecord::Migration
def self.up
create_table :order_lines do |t|
t.column :order_id, :integer
t.column :product_id, :integer
t.column :amount, :integer

end
end

def self.down
drop_table :order_lines

end
end

An OrderLine is associated with an Order and a Product, and can contain more than one
of the same Product. Last, here’s db/migrate/007_create_users.rb:

class CreateUsers < ActiveRecord::Migration
class User < ActiveRecord::Base; end

def self.up
create_table :users do |t|
t.column :username, :string
t.column :password, :string

end

User.create :username => 'admin',
:password => 'admin'

end

def self.down
drop_table :users

end
end

CHAPTER 4 ■ STORE ADMINISTRATION62

881-4 CH04.qxd 8/19/07 3:11 PM Page 62

The only thing that’s different about this model is that you need to create at least one user
from scratch, which you can use to add further users. Before you go any further, it’s important
that you migrate the database, so all these new tables are available:

jruby -S rake db:migrate
jruby -S rake db:migrate RAILS_ENV=test

When this is done, you can edit the model files and add all relationships that until now
you only had in the database. You begin with Customer, in the file app/models/customer.rb.
It should look like this:

class Customer < ActiveRecord::Base
has_many :orders

def to_s
"#{given_name} #{sur_name}"

end
end

The only thing you would possibly want from a Customer is to know which orders he or
she is associated with. In some circumstances printing a Customer is interesting, so you add
a custom to_s method to cater for this. Next, open the file app/models/order.rb and change
it into this:

class Order < ActiveRecord::Base
has_many :order_lines
belongs_to :customer

end

An Order has many OrderLines and has one Customer. You can find the definitions for
OrderLine in app/models/order_line.rb and you should change them into this:

class OrderLine < ActiveRecord::Base
belongs_to :product
belongs_to :order

end

All this is obvious. Finally, the User model is good as it is.

User Administration
Now it’s time to add a new controller. The purpose of this one is to allow us to add or remove
users, because you’ll need this as soon as you switch on the authentication system. You’ll
begin with a scaffold for this:

jruby script/generate scaffold User

Then you’ll tear a whole lot of stuff out of it, because you just want to be able to do three
things: list the users, add a user, and remove a user. (You can implement password changing if
you want, but at this stage it doesn’t matter if you change passwords or just re-create the user.)
So, open up app/controllers/users_controller.rb and remove the show, edit, and update

CHAPTER 4 ■ STORE ADMINISTRATION 63

881-4 CH04.qxd 8/19/07 3:11 PM Page 63

methods. Also remove the reference to update in the verify call at the top. Next, add a direc-
tive to use the admin layout on the second line:

layout "admin"

That’s all that’s needed for the controller. Next, on to the views. You can safely remove the
files app/views/users/show.rhtml and app/views/users/edit.rhtml. Next, change the
app/views/users/list.rhtml file to read like this:

<h1>Authenticated users</h1>

<table width="300">
<tr>
<th align="left">Username</th>
<th align="right">Password</th>

</tr>

<% for user in @users %>
<tr>
<td align="left"><%= h user.username %></td>
<td align="right"><%= h user.password.gsub(/./,'*') %></td>
<td> </td>
<td><%= link_to 'Remove', { :action => 'destroy',

:id => user }, :confirm => 'Are you sure?', :post => true %></td>
</tr>

<% end %>
</table>

<%= link_to 'Previous page', { :page =>
@user_pages.current.previous } if

@user_pages.current.previous %>
<%= link_to 'Next page', { :page =>

@user_pages.current.next } if
@user_pages.current.next %>

<%= link_to 'New user', :action => 'new' %>

Try it out by going to http://localhost:3000/users. If all is well, you should see one entry
for the “admin” user, and nothing else. This concludes the user administrative interface. Go
ahead and add a user or two. Later on you’ll protect these pages from entry if you don’t have
a valid username and password.

Order Handling
For order handling, the flow is that you get a list of unhandled orders. Then you choose one
order, see all information about it, and from that step you can mark the order as handled, or
remove the order completely. You’ll once again begin with a scaffold to make your work easier:

jruby script/generate scaffold Order

CHAPTER 4 ■ STORE ADMINISTRATION64

881-4 CH04.qxd 8/19/07 3:11 PM Page 64

Next, open up the controller just generated (app/controllers/orders_controller.rb) and
remove the show, new, create, edit, update, and destroy methods. The new complete file
should look like this:

class OrdersController < ApplicationController
layout "admin"

def index
list
render :action => 'list'

end

GETs should be safe
(see http://www.w3.org/2001/tag/doc/whenToUseGet.html)
verify :method => :post, :only => [:remove, :handled],

:redirect_to => { :action => :list }

def list
@orders = Order.find(:all,:conditions => "status = 'placed'")

end

def handle
@order = Order.find(params[:id])
@price = @order.order_lines.inject(0) do |sum,l|
sum + l.amount * l.product.price

end
end

def remove
Order.find(params[:id]).destroy
redirect_to :action => 'list'

end

def handled
@order = Order.find(params[:id])
@order.status = "handled"
if @order.save
flash[:notice] = 'Order has been handled.'
redirect_to :action => 'list'

else
@price = @order.order_lines.inject(0) do |sum,l|
sum + l.amount * l.product.price

end
render :action => 'handle'

end
end

end

CHAPTER 4 ■ STORE ADMINISTRATION 65

881-4 CH04.qxd 8/19/07 3:11 PM Page 65

There’s lots of new information here. First of all, you’ve added the admin layout so you get
a unified layout. Second, the parameters to the verify method have been changed, so the only
parameter includes remove and handled. The list method has been changed, so it only shows
orders where the status is 'placed'. This is so you can retain the orders in the database, but
you don’t have to see them when they’ve been handled.

There are also three new methods. Rails will call the handle method when a specific order
should be shown and handled. It finds the order in question, and then sums the total price
together.

The remove method removes the order in question from the database.
The handled method sets the status to "handled" on the order in question, and redirects

to the listing. Open up the app/views/orders/list.rhtml file and change it so it looks like this:

<h1>Orders to handle</h1>

<table width="500">
<tr>
<th>Customer</th>
<th>Time</th>
<th>Amount</th>
<th>Items</th>

</tr>

<% for order in @orders %>
<tr>
<td><%= h order.customer %></td>
<td><%= order.time.strftime("%F %H:%M") %></td>
<td align="right"><%= money(order.order_lines.inject(0){

|sum,ol| sum + ol.amount*ol.product.price}) %></td>
<td align="right"><%= order.order_lines.inject(0){

|sum,ol| sum + ol.amount} %></td>
<td align="right" width="150"><%=

link_to "Handle order", :action => 'handle', :id => order %></td>
</tr>

<% end %>
</table>

This shows a pleasing list of orders, showing the time each order was placed, how much
money it amounts to, and how many items there are. The next step is to create a new file
called app/views/orders/handle.rhtml. This will be a big file, because it’s the main place for
watching data about an order. Here it is:

<h2>Handle order</h2>

<p>Customer: <%= h @order.customer %></p>
<p>Shipping address:

<%= h @order.customer.shipping_address_street %>

<%= h "#{@order.customer.shipping_address_postal}

#{@order.customer.shipping_address_zip}"%>

<%= h @order.customer.shipping_address_country %></p>

CHAPTER 4 ■ STORE ADMINISTRATION66

881-4 CH04.qxd 8/19/07 3:11 PM Page 66

<p>Billing address:

<%= h @order.customer.billing_address_street %>

<%= h "#{@order.customer.billing_address_postal}

#{@order.customer.billing_address_zip}"%>

<%= h @order.customer.billing_address_country %></p>

<table width="480">
<thead>
<td width="300" align="left">Product Name</td>
<td width="20" align="right">Quantity</td>
<td width="80" align="right">Each</td>
<td width="80" align="right">Price</td>

</thead>

<% @order.order_lines.each do |ol| %>
<tr>
<td width="300" align="left"><%= h ol.product.name %></td>
<td width="20" align="right"><%= ol.amount %></td>
<td width="80" align="right"><%= price ol.product %></td>
<td width="80" align="right"><%= money(

ol.amount * ol.product.price) %></td>
</tr>

<% end %>
<tr height="60">
<td colspan="4"> </td>

</tr>
<tr>
<td colspan="3" align="right">Total:</td>
<td align="right"><%= money @price %></td>

</tr>
</table>

<%= button_to 'Handled', :action=>'handled',:id=>@order %>
<%= button_to 'Remove', :action=>'remove',:id=>@order %>

As you can see, you first display the shipping address and billing address, then list all the
items with quantity, price, and combined price. Finally, two buttons let the handler either
remove or mark the order as handled.

Adding Some Authentication
You now have almost all functionality finished for the administration part of the Shoplet
application. There’s just a small piece missing. At the moment, anybody who knew the address
could do anything they wanted with the shop, and because the addresses are easy to guess,

CHAPTER 4 ■ STORE ADMINISTRATION 67

881-4 CH04.qxd 8/19/07 3:11 PM Page 67

this is no way to leave it. You’ve already prepared for adding authentication by creating the
User model, and the scaffolds for handling these. Now you need to secure your actions. When
you try to go to the admin parts of the application, you should be redirected to a login page,
submit your username and password, and if it is correct you should be redirected back to the
page you tried to access first. You’ll accomplish this through controller filters.

Rails provides filters to let you perform some task before or after an action runs. This
has profound implications and makes many tasks easy, not just authentication and security.

The first step you’ll take is to create a new controller. This controller will be the base for
all your protected controllers, and won’t have any actions itself. Open up the file app/
controllers/admin_controller.rb and write this into it:

class AdminController < ApplicationController
before_filter :authentication

private
def authentication
unless session[:user_id] && User.find_by_id(session[:user_id])
flash[:notice] = "Please log in"
redirect_to(:controller => 'auth', :action =>

'login', :into => url_for(params))
else
@loggedin = true

end
end

end

You first declare that the method called authentication should be called as a before_filter,
which means it should execute before an action. You then define the method itself, and mark it
as private. You first check if the parameter called :user_id in the session object is set, and if it is
you also make sure there is an existing user with that ID. Otherwise you place a message in the
flash and redirect to the login action on the auth controller (which you’ll create soon). If the
person is logged in, you just set the instance variable @loggedin to true.

Next, create a new controller by using the generate script:

jruby script/generate controller auth login logout

This creates a new controller called AuthController, with two actions called login and
logout available to it. In this way, you get some things for free, including tests and default
views. Open up the file app/controllers/auth_controller.rb and change it so it looks like
this:

class AuthController < ApplicationController
layout "admin"

def login
if request.post?
if user = User.find_by_username_and_password(

params[:username],params[:password])
session[:user_id] = user.id

CHAPTER 4 ■ STORE ADMINISTRATION68

881-4 CH04.qxd 8/19/07 3:11 PM Page 68

redirect_to params[:into] || {:controller => 'products'}
return

else
flash[:error] = "Wrong username or password"

end
end
@into = params[:into]

end

def logout
session[:user_id] = nil
redirect_to "/"

end
end

Several interesting things are going on here. First of all, you use the standard admin layout,
but you’ll modify it so it only shows the links on the left if someone is logged in. Next, the
login method will do two different things depending on if it’s called using an HTTP POST or
not. In this way you can let the view post information back to itself, and the login method will
handle it differently. So, if there was a POST, you check the username and password provided.
If they match, you set the session information and redirect either to the into parameter, or if
there is no such parameter you redirect to the products controller instead. If the username or
password doesn’t match, you fall through, setting a flash. Then you do the same thing as if it
was a GET, which is that you set the @into instance variable and display the view.

The logout method just wipes the session and redirects to the starting URL.
Next, let’s take a look at the login view that can be found in app/views/auth/login.rhtml.

It should look like this:

<h2>Please login with your username and password</h2>

<%= start_form_tag %>
<%= hidden_field_tag 'into', @into %>
<table>
<tr>
<td>Username:</td><td><%= text_field_tag 'username' %></td>

</tr>
<tr>
<td>Password:</td><td><%= password_field_tag 'password' %></td>

</tr>
<tr>
<td colspan="2" align="right"><%= submit_tag 'Login' %></td>

</tr>
</table>
<%= end_form_tag %>

Here you start a new form, but use all the default parameters, which means the browser
will POST it back to the same address. You set a hidden field with the 'into' parameter and
then ask for a username and password, display a login button, and end the form.

CHAPTER 4 ■ STORE ADMINISTRATION 69

881-4 CH04.qxd 8/19/07 3:11 PM Page 69

Now that you can make sure people can log in, you also need to modify all your con-
trollers so they won’t let anyone in if they haven’t been authenticated. So, open up
app/controllers/products_controller.rb, app/controllers/orders_controller.rb, and
app/controllers/users_controller.rb, and change the first line by replacing the word
ApplicationController with AdminController. The first line in the file for the
ProductsController should look like this:

class ProductsController < AdminController

Because all three of our controllers inherit from the admin controller, the before_filter
you applied earlier will act on all actions written in any of the controllers. The only thing left
is to open the layout file called app/views/layouts/admin.rhtml and change it by replacing the
part that looks like this:

<ul style="text-align: left;">
<%= link_to 'Administrate products',

{:controller => 'products'},:class => 'adminLink' %>
<%= link_to 'Handle orders',

{:controller => 'orders'},:class => 'adminLink' %>
<%= link_to 'Authenticated users',

{:controller => 'users'},:class => 'adminLink' %>

Replace this part with an if statement that only shows this when the person is logged in:

<% if @loggedin %>
<ul style="text-align: left;">
<%= link_to 'Administrate products',

{:controller => 'products'},:class => 'adminLink' %>
<%= link_to 'Handle orders',

{:controller => 'orders'},:class => 'adminLink' %>
<%= link_to 'Authenticated users',

{:controller => 'users'},:class => 'adminLink' %>

<p><%= link_to 'Log out', :controller=>'auth',:action=>'logout'%></p>
<% end %>

You also add a small 'Log out' link here, if the person is logged in.
Now it’s time to try it out. Remember that you added an “admin” user with password

“admin” before? You should use this now, if you haven’t already created an extra user. Try to
visit http://localhost:3000/products and see what happens. Also try to log out and log in
and add products. Everything should work fine as soon as you’re logged in, but should stop
working otherwise.

Functional Tests
Now the time has come to test a controller. You’ll base the tests on the test code automatically
generated for the products_controller, but it won’t work in the current state, because you

CHAPTER 4 ■ STORE ADMINISTRATION70

881-4 CH04.qxd 8/19/07 3:11 PM Page 70

added authentication in the last section. So, first test that you can just run the tests and that
they blow up in various interesting ways. However, before you do that, make sure the database
migration is at the latest version. Do that by running this:

jruby -S rake db:migrate RAILS_ENV=test

Next, run the functional tests for products_controller by running this command:

jruby test/functional/products_controller_test.rb

Now, open up test/functional/products_controller_test.rb and begin the testing by
adding two fixtures you’re going to need. Add these lines:

fixtures :users
fixtures :product_types

Then open up the file test/fixtures/users.yml and change it so it looks like this:

admin:
id: 1
username: admin
password: admin

other:
id: 2
username: other
password: other

Next, change the test_index test case to make sure it redirects correctly to the auth
controller, and also rename it to test_index_without_login. Do that by writing a method that
looks like this:

def test_index_without_login
get :index
assert_redirected_to :controller=> 'auth', :action => 'login'
assert_equal 'Please log in',flash[:notice]

end

As you can see, you first issue a get request for the index of the controller in question. You
then make sure you’ve been redirected to the right place, and that the flash is also set.

To test a method that’s protected by authentication, you’ll use a trick. The get method in
functional tests can take several optional parameters. One describes the parameters to set,
and another describes what the session should look like. By adding this parameter, you can
make it look like a user is logged in. Now create a new test_index method that looks like this:

def test_index
get :index, {}, {:user_id => users(:admin).id}
assert_response :success
assert_template 'list'

end

The second parameter to get is the query string or post parameters, and because you
don’t want to add anything like these, you just provide an empty hash. The next parameter sets

CHAPTER 4 ■ STORE ADMINISTRATION 71

881-4 CH04.qxd 8/19/07 3:11 PM Page 71

the variable :user_id in the session to a valid user ID, which means the action should succeed
as expected.

You do the same transformation with test_list, test_show, and test_new, adding the
empty hash if needed, and otherwise enclosing the parameters in an explicit hash.

Next you’ll change the test_create method. Because a new product isn’t valid without a
few parameters, you’ll change the line that posts information, and this results in a test_create
method that looks like this:

def test_create
num_products = Product.count

post :create,{:product => {:product_type_id=>1,
:name => 'abc', :price => '10.00'}},
{:user_id => users(:admin).id}

assert_response :redirect
assert_redirected_to :action => 'list'

assert_equal num_products + 1, Product.count
end

Here you have to provide a product_type_id, a name and a valid price, and the user_id
for the session. You also make sure that the new product has been added by counting all avail-
able products before and after the action has been performed. You should also fix the tests
test_edit, test_update, and test_destroy by adding the session parameter and enclosing
the rest in an explicit hash. The end result of these methods should look like this:

def test_edit
get :edit, {:id => 1}, {:user_id => users(:admin).id}

assert_response :success
assert_template 'edit'

assert_not_nil assigns(:product)
assert assigns(:product).valid?

end

def test_update
post :update, {:id => 1}, {:user_id => users(:admin).id}
assert_response :redirect
assert_redirected_to :action => 'show', :id => 1

end

def test_destroy
assert_not_nil Product.find(1)

CHAPTER 4 ■ STORE ADMINISTRATION72

881-4 CH04.qxd 8/19/07 3:11 PM Page 72

post :destroy, {:id => 1}, {:user_id => users(:admin).id}
assert_response :redirect
assert_redirected_to :action => 'list'

assert_raise(ActiveRecord::RecordNotFound) {
Product.find(1)

}
end

Now you can run the test again, and ideally it will result in much better output. To be able
to run all tests, you need to modify the orders_controller_test.rb and
users_controller_test.rb too, so the test cases handle authentication, and also so that the
methods you removed aren’t used in the tests. However, I leave that as an exercise for you.
When that is done, you can always run your tests by just invoking rake in the directory of your
application:

jruby -S rake

Summary
We’ve walked through the administration parts of a completely new application that could
well be the backbone for an online shop application. Of course, some things are missing, such
as further validations and more testing, but the core is there. I hope this has also served as a
fast, practical introduction to many of the day-to-day tasks in creating a Rails application. The
next chapter will talk about how the user interacts with this application; we’ll create the code
for that, and then I’ll take a few pages to talk about different databases for a JRuby on Rails
application.

CHAPTER 4 ■ STORE ADMINISTRATION 73

881-4 CH04.qxd 8/19/07 3:11 PM Page 73

881-4 CH04.qxd 8/19/07 3:11 PM Page 74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

