
Chapter

1

Integrating ActionForms with POJOs

The acronym POJO stands for Plain Old Java Object—in other words, an ordinary JavaBean.
POJOs are (among other things) commonly used to transfer data between the various components
and architectural layers of a system, for example between the presentation tier and the web tier of
a J2EE application, or more fundamentally, between a service and its client. Complex business
objects are often represented as a graph of POJOs; for example, an Invoice POJO might contain
a Customer POJO, a list of LineItem POJOs, and so forth.

Perhaps the most frequently heard gripe about Struts is that unlike some of the newer web applica-
tion frameworks (Spring, WebWork, JavaServer Faces, etc.) it can't deal directly with POJOs. As
a result, people developing Struts applications often feel forced to spend a considerable amount of
time and energy devising solutions to bridge the gap, usually by transferring values between
instances of ActionForm and POJO graphs. Often there are translations that need to be performed
that complicate this process and make for tedious work.

A number of different approaches have been formulated in the past to mitigate this problem (and
are still frequent topics of debate on the mailing lists), but in this chapter we'll take a look at a new
approach that solves the problem at its root and thereby eliminates the overhead of working with
POJOs for Struts developers.

Note

This chapter begins a new section of Struts Live that deals with more advanced topics than the earlier
chapters. An open source implementation of the solutions presented in these new chapters is available in
both binary and source formats from the strutslive project hosted on java.net (http://strutslive.dev.java.net).

10

http://strutslive.dev.java.net

The Trouble With POJOs

2 Struts Live

The Trouble With POJOs

Struts developers have nearly all bumped their heads on this at one time or another. Here's the sce-
nario: you need to add a couple of fields to an ActionForm to capture numeric values. But
because you are new to Struts, or out of haste, forgetfulness, temporary amnesia, or whatever, you
type them as Integer or BigDecimal rather than String. The next thing you know, you're look-
ing at an ugly stacktrace, or trying to figure out why invalid input is causing an Integer value to
change to zero. Let's look at a simple example. The EmployeeForm class shown in Listing 10.1
consists of a few harmless String properties.

Listing 10.1: A simple subclass of ActionForm (EmployeeForm) with String properties

...
public class EmployeeForm extends ActionForm implements Serializable
{
 private static final long serialVersionUID = 1L;

 private String firstName;
 private String lastName;
 private String department;

 public EmployeeForm() { }

 public String getDepartment() {
 return department;
 }
 public void setDepartment(String department) {
 this.department = department;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

The Trouble With POJOs

3Chapter 10: Integrating ActionForms with POJOs

If we use the JSP shown in Listing 10.2 to render it, everything works fine, and we can enter arbi-
trary values (or no values) in any of the fields and have the underlying form values updated cor-
rectly.

Listing 10.2: EmployeeDetail.jsp

<%@ taglib uri="/WEB-INF/lib/struts-bean.tld" prefix="bean"%>
<%@ taglib uri="/WEB-INF/lib/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/lib/struts-logic.tld" prefix="logic"%>

<html:html locale="true">
<head>
 <link rel="stylesheet" href="employee/stylesheet.css" type="text/css">
 <title><bean:message key="title.example.form"/></title>
</head>
<body>

<h1><bean:message key="heading.employee.modify"/></h1>

<html:form action="/modifyEmployee" method="post">
<table>
 <tr>
 <td class="Label"><bean:message key="label.firstname"/><td>
 <td class="Field"><html:text property="firstName"/></td>
 <td class="ErrorMessage"><html:errors property="firstName"/></td>
 </tr>
 <tr>
 <td class="Label"><bean:message key="label.lastname"/><td>
 <td class="Field"><html:text property="lastName"/></td>
 <td class="ErrorMessage"><html:errors property="firstName"/></td>
 </tr>
 <tr>
 <td class="Label"><bean:message key="label.department"/><td>
 <td class="Field"><html:text property="department"/></td>
 <td class="ErrorMessage"><html:errors property="department"/></td>
 </tr>
 <tr> <td colspan=3><html:submit/></td> </tr>
</table>
</html:form>

</body>
</html:html>

The Trouble With POJOs

4 Struts Live

The JSP in Listing 10.2 renders the page shown in Figure 10.1, which simply displays three fields
and a submit button. The underlying EmployeeForm fields are all typed as String, so no conver-
sion need be performed when mapping the submitted values to the fields. As a result, any arbi-
trary values can be entered and successfully processed during the ActionForm population
performed by Struts.

Figure 10.1: Modify Employee Info page

However, let's look at what happens if we add a couple of numeric fields to the EmployeeForm.
Here are the new fields:

...
private Integer employeeNumber;
...
private BigDecimal salary;
...
public Integer getEmployeeNumber() {
 return employeeNumber;
}
public void setEmployeeNumber(Integer employeeNumber) {
 this.employeeNumber = employeeNumber;
}
public BigDecimal getSalary() {
 return salary;
}
public void setSalary(BigDecimal salary) {
 this.salary = salary;
}
...

The Trouble With POJOs

5Chapter 10: Integrating ActionForms with POJOs

We can then add the new fields to the JSP code:

We can successfully submit values for these new fields as long as they match the Java types of the
underlying EmployeeForm properties. But if the user accidentally enters a non-numeric value in
either field, weird things happen. For example, if a non-numeric value is entered in the Employee
Number field, as shown in Figure 10.2, Struts won't be able to correctly populate the Employee-
Form.employeeNumber property because it is typed as Integer.

Figure 10.2: Entering a non-integer employee number on the Modify Employee Info page

...
<tr>
 <td class="Label"><bean:message key="label.employee.number"/><td>
 <td class="Field"><html:text property="employeeNumber"/></td>
 <td class="ErrorMessage"><html:errors property="employeeNumber"/></td>
</tr>
<tr>
 <td class="Label"><bean:message key="label.salary"/><td>
 <td class="Field"><html:text property="salary"/></td>
 <td class="ErrorMessage"><html:errors property="salary"/></td>
</tr>
...

The Trouble With POJOs

6 Struts Live

Unfortunately, Struts responds to this situation by setting the Integer field's value to 0 (Figure
10.3). This happens before your any of your code is called, so no ActionMessage is generated to
alert the user. If 0 is a valid value for the field (for example the number of dependents to use in
calculating an employee's income tax withholding), then the EmployeeForm's validate()
method would have to be coded to compare the property value against the corresponding request
parameter to distinguish this behavior from the user actually entering a 0 in the browser. And then
you would still be left with the problem of restoring the property's original value.

Figure 10.3: Employee number changed to zero as a side effect of a conversion error

The Trouble With POJOs

7Chapter 10: Integrating ActionForms with POJOs

The situation with the Salary field is even worse. For example, if a user enters a value containing
a currency symbol or thousands separators (in the U.S., a dollar sign and commas, respectively) as
shown in Figure 10.4, or simply submits a blank value, an exception is thrown by the conversion
code.

Figure 10.4: Entering a salary value containing a comma on the Modify Employee Info page

The Trouble With POJOs

8 Struts Live

Unfortunately, the conversion exception occurs before the framework calls our code, and there's
no way to catch it. The resulting default behavior is to spew a stack trace to the user interface as
depicted in Figure 10.5. We could improve upon this by adding a handler for the specific excep-
tion type to redirect to a custom error page, but that's almost certainly not the behavior we want.

Figure 10.5: The stack trace that results from a failed BigDecimal conversion. Look familiar?

So what does all this have to do with POJOs? Well, POJOs usually contain properties of various
types, so conversion issues such as these (and several others for various other fundamental Java
types) would no doubt rear their ugly heads if we were to attempt to integrate a POJO directly
with an ActionForm.

The Trouble With POJOs

9Chapter 10: Integrating ActionForms with POJOs

Where POJOs Fit in the Architecture

In order to provide for clean separation between tiers, web application architectures often include
delegates, proxies, or façades that can be called from the web tier to store and retrieve data. This
shields the web tier from the underlying persistence implementation. Often, the lower tier uses
POJOs as data transfer objects (DTOs), to shuttle data across these interfaces.

Suppose then that we could call an API that would return instances of the Employee POJO shown
in Listing 10.3, which contains properties identical to those of the EmployeeForm.

Listing 10.3: An Employee POJO

...
public class Employee implements Serializable
{
 private static final long serialVersionUID = 1L;

 private Integer employeeNumber;
 private String firstName;
 private String lastName;
 private String department;
 private BigDecimal salary;

 public Integer getEmployeeNumber() {
 return employeeNumber;
 }
 public void setEmployeeNumber(Integer employeeNumber) {
 this.employeeNumber = employeeNumber;
 }
 public String getDepartment() {
 return department;
 }
 public void setDepartment(String department) {
 this.department = department;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public BigDecimal getSalary() {
 return salary;
 }
 public void setSalary(BigDecimal salary) {
 this.salary = salary;
 }
}

The Trouble With POJOs

10 Struts Live

Ideally, we could make the Employee instance (or its clone) a property of the EmployeeForm. That
would allow us to rewrite the EmployeeForm as follows:

We could then modify the property attributes in the JSP from Listing 10.2 to reference the nested
properties in the Employee bean, as in the following snippet:

However, because of the conversion issues we observed in the previous section, the Struts docu-
mentation discourages following this approach. Instead, developers are advised to mirror POJO
properties in ActionForms, and to type all ActionForm properties as String or boolean (or
native arrays of those types). As a consequence, Struts applications that make use of POJOs
require a layer of code to map values between POJO properties and ActionForm fields. Along the
way, values must be converted between String representations suitable for the user interface and
the actual Java types used internally.

...
public class EmployeeForm extends ActionForm implements Serializable
{
 private static final long serialVersionUID = 1L;

 private Employee employee;

 public EmployeeForm() { }

 public Employee getEmployee() {
 return employee;
 }
 public void setEmployee(Employee employee) {
 this.employee = employee;
 }
}

...
<html:form action="/modifyEmployee" method="post">
<table>
 <tr>
 <td class="Label"><bean:message key="label.firstname"/><td>
 <td class="Field"><html:text property="employee.firstName"/></td>
 <td class="ErrorMessage"><html:errors property="employee.firstName"/></td>
 </tr>
 ...
 <tr> <td colspan=3><html:submit/></td> </tr>
</table>
</html:form>
...

The Trouble With POJOs

11Chapter 10: Integrating ActionForms with POJOs

The UI layer generally requires this conversion anyway in order to perform calculations required
to (among other things) validate submitted values. For example, to check that a number submitted
by the user lies in a specified range, the string value that the user submitted must first be con-
verted to a numeric Java type before the comparison is made. Unfortunately, the current approach
encourages making these conversions twice—once for the validation code, and again later when
transferring values from the ActionForm to more strongly typed POJO properties.

Apart from the obvious inefficiency of converting the same value twice, there's an inherent risk
that the conversions used in the validation code may get out of sync with the ones used in the bean
population code.

How Struts Handles Conversion

12 Struts Live

How Struts Handles Conversion

Struts relies on an Apache Jakarta library, commons-beanutils, to bind values from the HTTP
request to ActionForm properties during form submission (inbound processing), and from
ActionForm properties to JSP tags during rendering (outbound processing). The commons-bea-
nutils library provides a set of reflection-based services to allow bean properties to be accessed by
name. Note that the property name can be an arbitrarily complex keypath, as the commons-bea-
nutils library is designed to handle nested properties.

ActionForm Population

The RequestProcessor provides the Struts framework’s dispatch mechanism. Its process()
method is invoked by the ActionServlet’s doGet() or doPost() method to process a given
request. The process() method then makes a series of callbacks to methods that handle discrete
steps in processing the request. One of those methods is processPopulate(), which is responsi-
ble for populating the ActionForm’s properties with values from the request, as shown in Figure
10.6.

Figure 10.6: Request processing high-level sequence diagram

The processPopulate() method delegates the actual population functionality to Bea-
nUtils.populate(), handing it the ActionForm instance and a Map containing the request
parameters. The populate() method iterates the map’s keys and makes callbacks to Bea-
nUtils.setProperty() to set individual ActionForm properties.

How Struts Handles Conversion

13Chapter 10: Integrating ActionForms with POJOs

The setProperty() method is essentially a wrapper that relies on methods of another class,
PropertyUtils, to set the property values. (Note: details of the BeanUtils class's interactions
with other classes in its package, such as PropertyUtils and ConvertUtils, are not shown in
Figure 10.6.) Before invoking the PropertyUtils functionality, the setProperty() method
checks the target property type to determine whether the provided value needs to be converted.
(For example, if the request contained a parameter named ‘salary’ matching a property of type
BigDecimal, the request value would need to be converted to that type.) If conversion is required,
the parameter value and the target type are passed to ConvertUtils.convert(), which attempts
to perform the conversion.

The ConvertUtils class includes a mechanism for registering Converters by type, and registers
a provided set of default Converters in its constructor. Converters implement the Converter
interface, which defines a single method with the following signature:

public Object convert(Class type, Object value);

Classes that implement the Converter interface throw a ConversionException to indicate that
conversion has failed.

The Conversion Conundrum

It would seem at first glance that BeanUtils provides all the functionality that Struts would need
to bind values to strongly typed POJO properties. However, there are several problems with the
conversion mechanism that present formidable obstacles.

Perhaps the biggest problem is that the RequestProcessor calls populate() on the BeanUtils
class instead of directly calling its setProperty() method. The populate() method simply iter-
ates a Map of request values and calls setProperty() for each non-null key. The problem is that
if a ConversionException is thrown during the call to setProperty(), the iteration is short-cir-
cuited because populate() doesn't catch the exception. And even if it did catch ConversionEx-
ceptions, there would be no way to provide information to the calling method about failed
conversions because the return type is void.

So in addition to cutting short population when a conversion error occurs, the populate()
method loses the information that would be needed to gracefully handle the error: the property
name and the errant value. These would be needed to create an appropriate error message, and
they would also be needed when rendering the input page, so that users could review and correct
any invalid values they had entered.

How Struts Handles Conversion

14 Struts Live

Another problem is that even if the RequestProcessor had access to the values that had failed
conversion, it would have nowhere to cache them so that they would be available during JSP ren-
dering. For example, if an ActionForm had a Salary field typed as String and the value in the
request was the string foo, the Salary field would be populated with the invalid value, which
could then be presented back to the user along with a validation error message. But if the salary
property was typed as BigDecimal, where would the value foo be stored?

Another problem is that the design of ConvertUtils and the Converter classes doesn't ade-
quately support the formatting capabilities that would be needed for strongly typed properties.
Since the provided Converter implementations simply call toString() to format object values,
some types, such as BigDecimal and Date, would require custom implementations. However,
because Converters can only be registered by property type, there would only be a single format
available for all BigDecimal properties, all Date properties, etc. That's far too limiting for most
applications.

As a result of the conversion and formatting issues we've examined in this section, Struts develop-
ers are encouraged to design their ActionForm classes as simple String buffers, effectively pro-
viding a caching mechanism that could be—and ought to be—provided by the framework.
Developers are then burdened with implementing any conversion, formatting, and population
code needed to transfer values to and from the buffer to their destination. They must then write
additional validation code to check for potential conversion errors prior to performing the actual
conversions.

Solving the POJO Problem

15Chapter 10: Integrating ActionForms with POJOs

Solving the POJO Problem

In the previous section, we saw several issues that prevent the use of strongly typed properties in
ActionForms, which by extension effectively prevents Struts from working with POJOs. We can
summarize the issues as follows:

ƒ Conversion exceptions short-circuit the BeanUtils.populate() method, leaving the
ActionForm in an invalid, partially populated state

ƒ The framework doesn't cache request values that it can't convert.

ƒ Even if there was such a cache, there would be no mechanism for Struts JSP tags to access it
in order to display the unconverted value for a given property.

ƒ There's no support for formatting property values when they are accessed by Struts tags.

Fortunately, taking advantage of several convenient extension points in Struts can solve these
problems.

Design Strategy

There are actually a number of potential solutions to the POJO problem, but this chapter focuses
on a solution that requires relatively little code, and is fairly nonintrusive. Let's take a look at the
key design strategies we'll be exploiting.

The first of these strategies is to shift responsibility for ActionForm population to an abstract sub-
class of ActionForm. Managing its own population will give the subclass improved error han-
dling capabilities, which will provide the following advantages over the current
RequestProcessor/BeanUtils implementation:

ƒ Conversion exceptions will no longer abort ActionForm population. This will allow
comprehensive reporting of errors to the user.

ƒ The ActionForm will be able to automatically post an appropriate error message keyed to the
corresponding property whenever a conversion error occurs.

ƒ Unconverted values will be cached in the ActionForm so that they can be presented back to
the user.

Solving the POJO Problem

16 Struts Live

The second design strategy is to provide a more flexible and comprehensive mechanism to handle
conversion and formatting by creating a set of Formatter classes. The Formatters will have sev-
eral advantages over Converters:

ƒ Formatters will have separate methods for inbound and outbound processing to avoid
ambiguity.

ƒ Developers will be able to register a specific Formatter class to be used for a given property
in addition to being able to register them by type. This will allow values to be automatically
formatted for display, relieving the ActionForm of this responsibility

ƒ Developers will be able to provide optional settings that provide finer control over formatting.

ƒ Formatters will provide keys that can be used to look up canonical conversion error
messages

The third and final element of the design strategy is to give Struts tags automatic access to uncon-
verted request values and properly formatted values bean properties by customizing the way that
PropertyUtils accesses ActionForm values. This will provide the following advantages:

ƒ If the request value for a given property can't be converted, the request value will
automatically be substituted for the property value for all tag references.

ƒ Property values will be automatically formatted for display based on their registered
Formatters.

Let's look at an overview of the steps we'll need to perform to implement the solution to the POJO
problem.

Solving the POJO Problem

17Chapter 10: Integrating ActionForms with POJOs

Solution Steps

Here are the steps we'll follow to implement the design strategy outlined in the previous section:

1. Create Formatters. Create a Formatter base class that provides default functionality, and
allows registration of Formatter subclasses by type as well as by property. Create an initial
set of subclasses for testing purposes.

2. Implement the PojoForm interface. Create a PojoForm interface that defines methods for
accessing unconverted values, accessing formatted versions of bean properties, and
populating the bean. Create an ActionForm subclass (PojoActionForm) that implements the
methods to provide the needed support for improved conversion error handling and the new
formatting capabilities.

3. Customize PropertyUtils. Create a PropertyUtilsBean subclass that overrides
getProperty() to provide special handling for PojoForm instances, returning an unconverted
value for the property if one is present, or else calling the PojoForm's formatting code to
format the property value.

4. Test PojoActionForm Functionality. Write MockStrutsTestCase tests to verify that the new
PojoActionForm functionality works correctly.

5. Customize the RequestProcessor. Create a RequestProcessor subclass that will invoke
populate() on PojoForm instances, and that will handle the returned ActionErrors the
same way that the base class handles the ActionErrors returned by the call to
ActionForm.validate().

6. Integrate with web app. Configure the RequestProcessor and ActionForm subclasses in
struts-config.xml, and create a Struts PlugIn that sets up the custom PropertyUtilsBean at
load time.

The remainder of this chapter provides detailed explanations and code examples for each of the
steps of the proposed solution. When complete, the solution will provide automatic formatting,
type conversion, validation (partially—we can extend the validation to be more comprehensive
later), population, and error messaging for subclasses of PojoActionForm.

	Integrating ActionForms with POJOs
	The Trouble With POJOs
	Where POJOs Fit in the Architecture

	How Struts Handles Conversion
	ActionForm Population
	The Conversion Conundrum

	Solving the POJO Problem
	Design Strategy
	Solution Steps

