
Understanding Tomcat Security

In the rush to bring products and services online, security is typically the one area that
gets the least attention, even though it is arguably the most important. The reasons for
neglecting security vary. In some cases, implementing good security is seen as too
much work in a compressed timeline. In other cases, an organization chooses to rely
on the security features built into another product, such as an operating system or
application server, rather than enhance that security with additional steps.

Even if your system doesn't deal with financial transactions, security should still be a
high priority. Security isn't just about protecting money anymore. In the Internet age,
many other issues require strong security, from personal privacy to medical
information. Organizations that have well-established privacy policies and have a track
record of taking security seriously, often attract more customers and clients than those
who don't.

The Apache Project's web servers are the most popular web servers in the world with
over 63% of web sites, according to the ongoing survey from Netcraft:
http://www.netcraft.com/Survey. That doesn't even include the number of private web
servers in use, such as corporate intranets and personal desktops. While the Apache
numbers are obviously due to the popularity of the Apache HTTP server, Apache
Tomcat is popular in its own right, with millions of downloads since its release. In
addition, many web servers use Tomcat as the servlet container of choice, so while a
survey such as Netcraft's can only determine the actual server serving the request, there
could be any number of Apache Tomcat installations supplying the actual content.
Thus, devoting resources and effort to securing your Apache Tomcat installation is just
as important as securing your applications, your operating systems, and your networks.

1

Chapter 1: Understanding Tomcat Security

6

Vulnerability Overview
Web applications are complex systems by definition. Several different components are
needed to make a complete system, including:

❑ The operating system and its file systems

❑ The web server itself, serving HTTP requests

❑ A dynamic content engine, such as Tomcat, executing the application and
assembling responses

❑ A database

❑ A network or networks

❑ The Java Virtual Machine (JVM) in the case of applications designed with
servlets and JSPs

❑ Any-third party packages or libraries

A vulnerability can be found in any one of these components. Even more frustrating, a
specific combination of components can have a vulnerability not found in another
combination. For example, a vulnerability found when using Tomcat with a certain
relational database may not be an issue if a different database was used. Likewise, a
problem with one version of a component might not be a problem with an older or
newer version.

Ten Most Common Security Problems
The Open Web Application Security Project (OWASP) is an Open Source community
project staffed entirely by volunteers. The group has highlighted the ten most common
vulnerabilities in web applications and services, noting that these problems are as
serious as network security problems and deserve just as much attention.

Vulnerability Description

Unvalidated
Parameters

Information from web requests is not validated before being
used by a web application. Attackers can use these flaws to
attack backend components through a web application.

Broken Access
Control

Restrictions on what authenticated users are allowed to do are
not properly enforced. Attackers can exploit these flaws to
access other users' accounts, view sensitive files, or use
unauthorized functions.

Vulnerability Overview

7

Vulnerability Description

Broken Account
and Session
Management

Account credentials and session tokens are not properly
protected. Attackers that can compromise passwords, keys,
session cookies, or other tokens can defeat authentication
restrictions and assume other users' identities.

Cross-Site
Scripting (XSS)
Flaws

The web application can be used as a mechanism to transport
an attack to an end user's browser. A successful attack can
disclose the end user's session token, attack the local machine,
or spoof content to fool the user.

Buffer Overflows Web application components in some languages that do
not properly validate input can be crashed and, in some
cases, used to take control of a process. These components
can include CGI, libraries, drivers, and web application
server components.

Command
Injection Flaws

Web applications pass parameters when they access external
systems or the local operating system. If an attacker can
embed malicious commands in these parameters, the
external system may execute those commands on behalf of
the web application.

Error Handling
Problems

Error conditions that occur during normal operation are not
handled properly. If an attacker can cause errors to occur that
the web application does not handle, they can gain detailed
system information, deny service, cause security mechanisms
to fail, or crash the server.

Insecure Use of
Cryptography

Web applications frequently use cryptographic functions to
protect information and credentials. These functions and the
code to integrate them have proven difficult to code properly,
frequently resulting in weak protection.

Remote
Administration
Flaws

Many web applications allow administrators to access the site
using a web interface. If these administrative functions are not
very carefully protected, an attacker can gain full access to all
aspects of a site.

Web and
Application
Server
Misconfiguration

Having a strong server configuration standard is critical to a
secure web application. These servers have many
configuration options that affect security and are not secure
out of the box.

The OWASP Top Ten list is a "living" document. It can and will change over time. To
get the latest version, and to participate in the project itself, visit the OWASP web site
at http://www.owasp.org/.

Chapter 1: Understanding Tomcat Security

8

It's important to remember that the list is not specific, nor can it be. Each web
application is different, so instead of thinking in terms of specific problems, it is more
effective to think in terms of the types of problems, as shown in the list. All web
applications suffer from these types of vulnerabilities, and it is up to the development
team, the systems administration team, and the organization supporting them, to make
correcting these problems a priority. Above all, remember that your web application is
a critical part of your security model. Web application security techniques are discussed
in Chapter 6. For now, let's address the last item in the list: "Web and Application
Server Misconfiguration."

Known Tomcat Vulnerabilities
Tomcat, like any other application, is not bug free. A fundamental part of any security
policy is not only staying abreast of known vulnerabilities, usually through a mailing
list like the BUGTRAQ list or one of many others, but also staying current with recent
patch levels and versions of the software. Since Tomcat's version 4 was released,
several vulnerabilities have been found and resolved. As of this writing (January 2003),
the recommended versions of the Tomcat 4 branch are 4.0.6 and 4.1.18. The 4.0 branch
is no longer actively developed, and work on Tomcat 5 has already started. If you are
unable to use Tomcat 4 for some reason, the recommended version is 3.3.1.

Servlet/JSP Spec Tomcat version

2.4/2.0 5.0.0 Alpha

2.3/1.2 4.1.18

2.2/1.1 3.3.1

Even if you have the latest version of Tomcat installed, you still need to worry about
potential vulnerabilities. In a web server environment, Tomcat is only one piece of the
entire system, so while you may have the latest security patches for Tomcat itself, your
system can still fall prey to attacks and exploits that target web applications or other
external system components.

Recently discovered Tomcat vulnerabilities have focused on problems with Tomcat
installation defaults, such as the Invoker servlet being enabled by default, allowing
an attacker to craft a URL that will display the source code of a JavaServer Page
instead of the content that the page generates. More on web application
vulnerabilities can be found in Chapter 6, Web Application Security.

Installation

9

Here's a list of the known vulnerabilities in Tomcat 4 through January 2003:

Date Announced Vulnerability

2003-01-09 Invoker servlet file disclosure vulnerability

2002-12-10 Default Servlet file disclosure vulnerability

2002-12-09 Mod_jk chunked encoding denial of service vulnerability

2002-08-21 JSP request cross site scripting vulnerability

2002-06-12 JSP engine denial of service vulnerability

2002-04-23 Servlet path disclosure vulnerability

2002-04-19 System path information disclosure vulnerability

As you can see, the majority of the problems found are application or configuration
oriented, not necessarily problems with Tomcat itself, such as a buffer overflow. All
vulnerabilities found so far have known workarounds and solutions; it is up to the
administrator to implement them in a timely manner. Any solutions to these
vulnerabilities not covered by upgrading to the latest version of Tomcat are discussed
in upcoming chapters.

For future reference, you can subscribe to various mailing lists to stay abreast of
vulnerabilities as they are found. Two popular mailing lists are the BUGTRAQ mailing
list, and the Web Application Security mailing list, known as webappsec. Information
on both, including charters, archives, and subscription information, can be found at
http://online.securityfocus.com/archive. In addition, vulnerability databases can be found at
http://online.securityfocus.com/bid and http://www.kb.cert.org/vuls. The CERT® Coordination
Center at Carnegie Mellon University is also an excellent source of Internet-related
security information, including up-to-date alerts and status reports on the newest
vulnerabilities. The CERT® Coordination Center web site can be found at
http://www.cert.org.

Installation
Right from the start, the decisions you make when installing Tomcat can have a
significant impact on the security of your installation. From a pre-installation planning
perspective, you will
want to consider:

❑ How will starting and stopping Tomcat be controlled?

❑ Which user account is used to run Tomcat?

Chapter 1: Understanding Tomcat Security

10

❑ Which ports will Tomcat use, and how will access to those ports
be controlled?

❑ What are Tomcat installation defaults, and do they fit our security model?

Running Tomcat as a Service
Like most applications designed to provide services for many users and accept requests
from other applications, Tomcat can be used in one of two ways. First, Tomcat can run
as a standard user-level application. In other words, users log into their account, start
up Tomcat, do their work, shut Tomcat down, and log out. In a single-
developer/single-desktop scenario, this may be ideal and all that is needed. The second
way is to run Tomcat as a service. By running it as a service, you are making it
available to serve requests to more than just the person logged in, and you are making
sure that Tomcat is available for those requests whether anyone is logged in or not. For
a web server, this is the standard setup.

If you're using Linux or another type of UNIX-like operating system, you'll want to set
up a script that starts and stops Tomcat as needed. Typically, this script would be
called in the system's boot routine, and called again when the system shuts down. This
allows Tomcat to be available to serve requests as much as possible. By including this
script in your system's init configuration, Tomcat will be available to accept requests
whenever the server is up.

If you're installing Tomcat on Microsoft's Windows operating system, you'll want to
install Tomcat as a Windows service so that it stays running without requiring that a
user stay logged in while it's running. Depending on the install method that you use
for Tomcat, there are two different ways to set up Tomcat as a service on Windows.
The first is the easiest: if you download the Tomcat self-installer package, there will be
an option to install Tomcat as a service when you run it. This can be seen in the
screenshot below:

By selecting the box labeled NT Service (NT/2k/XP only), the installer will take care of setting
up Tomcat as a Windows service instead of as a stand-alone application controlled by a
typical user. If, on the other hand, you installed Tomcat from a ZIP archive or even built
it yourself from source, you can still install it as a service after the fact.

Installation

11

Note that installing and uninstalling Tomcat as service is not the same as starting and
stopping Tomcat. You only need to do the service installation once. After that, you can
use the Services control applet or the command line to start and stop your Tomcat
service as needed. Running Tomcat as a service on Windows and UNIX-like platforms
is discussed in Chapter 2. For more detailed information on installing Tomcat, consult
Professional Apache Tomcat (ISBN 1-861007-73-6) from Wrox Press.

Using an Unprivileged User Account
One of the problems encountered when running web servers and other publicly
accessible applications is the concept of permissions. While your application might use
access controls to limit what certain users can do, that only applies to the application.
What about Tomcat itself? Buffer overflows, probably the most common exploit,
highlight the problems with running server applications under user accounts that have
total access to the system. For example, if a web server is running as root,
administrator, or superuser, and an attacker is able to send a request such that the web
server fails and allows arbitrary commands to run within its environment, those
commands will run with a superuser access.

The solution is to avoid using a privileged account to run Tomcat whenever possible.
By using an unprivileged user account, you can take the first step to protecting against
a future exploit that involves causing Tomcat to allow the execution of arbitrary
commands issued by an attacker. If Tomcat, running as an unprivileged user, were to
fail or for some reason allow an attacker access to the operating system, the only
permission level the attacker would typically have would be the permission level of the
Tomcat user, instead of administrator or superuser access.

Different operating systems have different ways of denoting the superuser account, or
administrator account. On UNIX variants, the administrator account is known as root.
On Windows systems, the administrator account is known as SYSTEM. UNIX-like
operating systems further complicate matters by requiring that all services listening on
ports less than 1024 run as root. This poses a problem, since popular Internet services
like e-mail, web browsing, and file transfers all occur on ports less than 1024 by
default. If one of those services was attacked and failed to handle the attack
appropriately, an attacker might gain access to that service's environment, in this case
an administrator environment. The less than 1024 rule doesn't apply to Windows
servers, since services run as SYSTEM by default, regardless of the port being used.

So, how do we use Tomcat as a stand-alone web server on port 80? By default,
Tomcat listens on port 8080 for HTTP requests. To get Tomcat to listen on port 80, the
default HTTP port, you have to do two things:

1. Change the org.apache.coyote.tomcat4.CoyoteConnector on port
8080 in server.xml to port 80

2. Start, stop, and run Tomcat as root if you're using a UNIX-like
operating system.

Chapter 1: Understanding Tomcat Security

12

As discussed earlier, running publicly available web services as root or superuser is
typically a bad idea, so the solution is to avoid using Tomcat as a stand-alone web server
on port 80 by integrating it with a standard HTTP web server such as Apache, Microsoft's
Internet Information Server, or Sun Microsystem's iPlanet. In the case of Apache, the less
than 1024 port restriction is handled nicely by Apache starting up as root, binding to
port 80, and then forking child processes to handle actual HTTP requests. These child
processes do not run as root, but as some other unprivileged user, typically a user
account known as nobody, set up specifically for Apache's use. Creating and running
Tomcat with unprivileged user accounts on Windows and UNIX-like platforms is
discussed in Chapter 2. For more detailed information on integrating Tomcat with a HTTP
server, consult Professional Apache Tomcat (ISBN 1-861007-73-6) from Wrox Press.

Using a Firewall
While a detailed discussion of firewalls is beyond the scope of this book, they can play
a key role in protecting your Tomcat installation, so we'll take a quick look at the
basics: what they do, why they're important, and some simple examples of how you
can use them.

Simply put, a firewall protects a computer or computer network from unauthorized
access. A firewall can be software, hardware, or a combination of both. There are
different types: proxy servers, packet filters, and stateful inspection firewalls. Firewalls
use rules to determine which network traffic should be allowed to pass, and which
shouldn't. These rules can be very simple, such as "deny all traffic to port 23," or
complex, such as "deny all traffic to port 3389, unless it comes from a certain list of IP
addresses, and arrives during a certain part of the day but only Monday through
Friday." The rules can also determine whether certain traffic is logged or not.

Most environments include a firewall that is a distinct component from the server
hosting Tomcat. Typically, the firewall is located between the public, untrusted
Internet, and the trusted application network. This location allows the firewall to
analyze all traffic as it passes in and out. The problem with relying on this firewall
for protection of your Tomcat installation is that by default, this firewall has to
include rules that apply to all nodes in the network that it is protecting. If the only
node it is protecting is the machine hosting Tomcat, all is good. If the firewall is
protecting a number of different networks, and dozens or even hundreds of nodes, it
is possible that the firewall rule set may not be restrictive enough to provide the
protection you desire for your Tomcat installation. In this scenario, you have
additional tools you can use to add layers of protection.

Linux kernels since version 2.0 have included support for firewall rules. The 2.0 kernels
used a tool called ipfwadm, while the 2.2 kernels used ipchains. The 2.4 kernels
have yet another framework for setting up firewalls, and that is through netfilter
and iptables.

Installation

13

Let's take a look at a simple firewall rule. Assume that the environment is Tomcat
integrated with the Apache HTTP server using a web server connector such as JK or JK2.
By default, Tomcat will use org.apache.coyote.tomcat4.CoyoteConnector to
listen on port 8009 for communications from Apache. In a single server scenario, that
means that traffic for port 8009 should never be received from any other machine at any
other address besides localhost, or 127.0.0.1. Leaving a connector port, such as 8009,
open to any traffic from anywhere is inviting trouble. So, on a Linux system, a rule for
rejecting traffic on port 8009 from any address but 127.0.0.1 might look like this:

ipchains -A input -s ! 127.0.0.1 -d 0/0 8009 -p all -y -j REJECT

Going from left to right, this particular rule says, "add an input rule for all traffic from
any host except localhost, destined for port 8009 on any address, any protocol, and
reject it." By implementing a rule like this on the server itself, you can add one or
more layers of protection to your installation beyond the protection provided by an
external firewall.

The rule shown above is just an example. Your environment and requirements might
need different rules, or you might not want to use a firewall on your server at all. In a
load-balancing environment, your Tomcat installation might receive requests on port
8009 from any number of IP addresses on your local network. In that case, you would
change the rule to use a different source parameter, like this:

ipchains -A input -s ! 192.168.1.0/24 -d 0/0 8009 -p all -y -j REJECT

As shown, the rule would reject traffic destined for port 8009 unless it came from the
192.168.1.0 Class C network, which might be the addresses used by your Apache
servers. A rule for iptables would be similar. Either way, the point is that using a
local firewall or packet filter can add protection to your Tomcat installation without
requiring Tomcat to handle the network traffic.

Firewalls and packet filters are worthy of a book themselves and can't be covered
thoroughly here. For more information on ipchains and iptables, consult the
manual pages and documentation, or check the HOWTOs and FAQs at
http://www.netfilter.org/. If you're using a UNIX variant besides Linux, consult your
vendor's product pages or investigate open source options. Many different solutions
exist, especially for open source operating systems like FreeBSD and OpenBSD.

If you're using a Windows server, you will need to install and configure Microsoft's
Internet and Security Acceleration (ISA) server or investigate a third-party firewall
package for your server, as there is no firewall or packet filter built into the Windows
server kernel. For more information on using Microsoft's ISA server, consult the
Microsoft MSDN HOWTO articles for ISA Server:
http://msdn.microsoft.com/howto/security.asp or the ISA Server homepage at
http://www.microsoft.com/isaserver/.

Chapter 1: Understanding Tomcat Security

14

Connector Management
In Tomcat parlance, a connector is an implementation of a particular Java class that is
configured to listen on a specific port with varying parameters, such as timeout or the
maximum number of connections. There are two different types of connectors: those
that allow browsers to connect directly to Tomcat; and those that listen for and handle
traffic from web servers like Apache or Microsoft's IIS. For example, a connector of the
first type would be the default HTTP connector on port 8080. A connector of the
second type would be the default JK/JK2 connector on port 8009. From the start,
Tomcat comes with some connectors enabled in server.xml, and
several disabled.

For Tomcat 4.1.18, the default connectors and their initial statuses are:

Port
Number

Connector Type Default
Status

8080 HTTP/1.1

org.apache.coyote.tomcat4.CoyoteConnector

Enabled

8443 SSL HTTP/1.1

org.apache.coyote.tomcat4.CoyoteConnector

Disabled

8009 JK/JK2 AJP 1.3

org.apache.coyote.tomcat4.CoyoteConnector

Enabled

8009 Legacy JK AJP 1.3

org.apache.ajp.tomcat4.Ajp13Connector

Disabled

8082 Proxied HTTP/1.1

org.apache.coyote.tomcat4.CoyoteConnector

Disabled

8083 Legacy HTTP/1.1

org.apache.catalina.connector.http.
HttpConnector

Disabled

8084 Legacy SSL HTTP/1.1

org.apache.catalina.connector.http.
HttpConnector

Disabled

8008 WARP

org.apache.catalina.connector.warp.
WarpConnector

Disabled

Default Tomcat Applications

15

Once you have Tomcat installed, you will want to review server.xml and decide
which connectors you need, and which you don't. Disable the connectors you don't
need by commenting them out in server.xml and restarting Tomcat. The
server.xml excerpt below shows the connector on port 8080 enabled:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
 port="8080" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="100" debug="0" connectionTimeout="20000"
 useURIValidationHack="false" disableUploadTimeout="true" />

And the one below shows a disabled connector:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
<!--
<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
 port="8080" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="100" debug="0" connectionTimeout="20000"
 useURIValidationHack="false" disableUploadTimeout="true" />
 -->

At a minimum, you will need at least one connector. If you disable all connectors,
Tomcat will be unable to listen for requests. If you're using Tomcat in stand-alone
mode as its own HTTP server, then you'll need the HTTP/1.1 connector on port 8080
or 80, and you won't need the JK/JK2 connector on port 8009. Likewise, if you are
using Tomcat with a HTTP server and not stand-alone, you won't need the HTTP/1.1
connector on port 8080. Instead, you would use the JK/JK2 connector on port 8009 or
some other port of your choosing, or even the WARP connector on port 8008. For
more on configuring and using the JK/JK2 and other connectors in server.xml,
consult Professional Apache Tomcat (ISBN 1-861007-73-6) from Wrox Press.

If you don't disable the connectors you aren't using, you allow Tomcat to receive traffic
on that port. An attacker could send all kinds of different packet types to that port,
looking for a vulnerability, and you would never know it was happening since it
wouldn't be interfering with connectors listening on other ports. In short, make sure
Tomcat is only listening on the ports you want it to use.

Default Tomcat Applications
Just as Tomcat has various connectors enabled by default, it also has several web
applications included and enabled by default. These applications consist of the following:

❑ The Manager application

❑ The Admin application

❑ The WebDAV application

❑ The examples application

Chapter 1: Understanding Tomcat Security

16

The applications are there for a reason, but that doesn't mean you have to sit back and
accept the way they are installed or the way they are configured by default. Analyzing
the default applications, determining which ones you need and which ones you don't,
and taking appropriate action might make the difference between being susceptible to
a vulnerability down the road, and being protected.

The Manager Application
The Manager application included with Tomcat is designed for ease of deployment and
management of web applications without having to affect the entire servlet container.

With the Manager application, you can:

❑ Deploy a new web application, on a specified context path, from the
uploaded contents of a WAR file

❑ Install a new web application

❑ List the currently deployed web applications, as well as the sessions that
are currently active for those web apps

❑ Reload an existing web application, to reflect changes in the contents of
/WEB-INF/classes or /WEB-INF/lib

❑ List the available global JNDI resources

❑ List the available security roles defined in the user database

❑ Remove an installed web application, start and stop an application, and
undeploy an application

At first glance, it might seem like the Manager application is not included with your
Tomcat installation. That's because the Context element for /manager is not
included in server.xml. The Manager application uses the Automatic Deployment
feature of Tomcat, and is deployed as a valid Context at startup because of the
manager.xml file in the webapps directory of your Tomcat installation.
Manager.xml looks like the following:

<Context path="/manager" docBase="../server/webapps/manager"
 debug="0" privileged="true">

 <!-- Link to the user database we will get roles from -->
 <ResourceLink name="users" global="UserDatabase"
 type="org.apache.catalina.UserDatabase"/>

</Context>

If you'd rather have the Context for the Manager application in your server.xml,
you can do this simply by copying the contents of manager.xml into server.xml
and restarting Tomcat. However, this will make management for many applications and
virtual hosts in Tomcat harder. By taking advantage of the Automatic Deployment
feature of Tomcat, you can install the Manager application for many virtual hosts
simply by copying manager.xml to each host's webapps folder.

Default Tomcat Applications

17

While the Manager application is available by default, access to it is disabled by
default. The Manager application requires a user account with a role of manager in
tomcat-users.xml, which is located in Tomcat's conf directory. The tomcat-
users.xml file does not include a user with Manager access permissions out of the
box. To enable Manager application access for a specific user, edit tomcat-
users.xml so that is looks like the following:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <role rolename="manager"/>
 <role rolename="admin"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="role1" password="tomcat" roles="role1"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
 <user username="admin" password="tomcat" roles="admin,manager"/>
</tomcat-users>

Note the role of manager added to the user account admin. Obviously, in your own
installation, you will want to change the password from tomcat to something else.
You can also use JDBC Realms and JNDI Realms to hold your user account and
permission information if you want to integrate with existing authentication systems
and avoid having to edit tomcat-users.xml.

If you wanted to further restrict access to the Manager application, you could do so by
restricting access to a certain IP address or host name by using a Valve. For example,
by adding a RemoteAddrValve or RemoteHostValve to manager.xml, you could
restrict access to only those computers on a local network or even to the Tomcat server
itself. In the example below, access to the /manager Context is restricted to requests
from IP address 127.0.0.1:

<Context path="/manager" debug="0" privileged="true"
 docBase="/usr/local/kinetic/tomcat4/server/webapps/manager">
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127.0.0.1"/>
</Context>

Once you have a user account with the appropriate permissions set up in tomcat-
users.xml, and any desired address or hostname restrictions in place using a Valve,
you can access the manager application in one of three ways:

❑ Via a web browser using a URL like:
http://localhost/manager/html/

❑ Via HTTP requests, suitable for use in scripts set up by system administrators

❑ As a set of task definitions for the Ant (version 1.4 or later) build tool

For more information on the Manager application, consult the Manager HOWTO at:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/manager-howto.html. For more on creating users
and roles, and using alternate methods to tomcat-users.xml, consult Chapter 4.

Chapter 1: Understanding Tomcat Security

18

The Admin Application
Similar to the Manager application, Tomcat 4 and 5 include an administration
application by default. Just as is the case with the Manager application, the Admin
application uses a file called admin.xml in Tomcat's webapps directory to auto-deploy
the /admin Context instead of including the Context in server.xml.

The contents of admin.xml look like this:

<Context path="/admin" docBase="../server/webapps/admin"
 debug="0" privileged="true">

 <!—
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127.0.0.1"/>
 -->

 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="localhost_admin_log." suffix=".txt"
 timestamp="true"/>

</Context>

As you can see, it looks very similar to manager.xml, including the use of a Valve to
restrict access to a specific IP address or range of addresses. The value of allow in the
Valve can be a comma-delimited list of IP addresses, or even a regular expression
such as 192.168.1.*.

What's the difference between Admin and Manager? The Manager application is for
managing web application deployment. The Admin application is for managing the
server itself. With the Admin application, you can do the following:

❑ Add and delete Connectors, as well as change their parameters

❑ Add, delete, and manage Hosts

❑ Add, delete, and manage Contexts within Hosts

❑ Manage Resources, such as DataSources and other
Environment parameters

❑ Manage Users and Roles

In short, rather than editing server.xml directly, you can accomplish the same tasks
by using the Admin application. It goes without saying, then, that access to the Admin
application should be monitored carefully and granted judiciously. Having access to the
Admin application is essentially the same as being able to edit server.xml.

Just like the Manager application, you can grant access to the Admin application using
tomcat-users.xml. While the Manager application requires a user account with a
role of manager, the Admin application requires a user account with the role of
admin. In the tomcat-users.xml file for our Manager example, for instance, the user
admin has both admin and manager privileges.

Default Tomcat Applications

19

By default, the Admin application can be reached at the following URL for your Tomcat
installation: http://localhost:8080/admin/. Once you've considered the
ramifications of changing the defaults, you can modify admin.xml and tomcat-
users.xml to grant access to the Admin application to other users and hosts. For
more on creating users and roles, and using alternate methods to tomcat-users.xml,
consult Chapter 4.

The examples Application
By default, Tomcat includes a set of JavaServer Pages and servlets as examples of how
to use Tomcat to serve web applications. In a production situation, the /examples
Context is unnecessary, and should be disabled. If left enabled, an attacker can use
some of the examples as a means of discerning information about the Tomcat
installation, such as pathnames and other information, all of which is better left hidden.

Disabling the /examples Context is easy. Simply comment out that Context in
server.xml, or delete it entirely. In fact, Tomcat 4.1.18 comes with a second
server.xml file called server-noexamples.xml.config. This file is identical to
server.xml, but without the /examples Context. Simply rename the default
server.xml to server-examples.xml.config, and then copy server-
noexamples.xml.config to server.xml and restart Tomcat. You now have a
default Tomcat installation without the /examples Context.

Because of the Automatic Deployment feature, performing the operation above won't
have any effect on the Manager or Admin applications. Both will still be available to
the hostnames where they're installed.

The WebDAV Application
The fourth and final application included with Tomcat 4 is the WebDAV application.
WebDAV is a method of allowing remote authoring of a web site using a compatible
WebDAV client. Tomcat 4.1.18 supports WebDAV 2, and compatible clients include:

❑ Adobe GoLive 5.0 (and other WebDAV-enabled Adobe products like
Photoshop)

❑ Internet Explorer 5 and 5.5 (Windows 2000)

❑ Jakarta Slide 1.0 WebDAV client library

❑ Office 2000 (Windows 2000)

Chapter 1: Understanding Tomcat Security

20

By default, the /webdav Context is distributed with read-only access enabled. In
order to use WebDAV for a particular Context, you'll need to make it read-write
instead. For example, to make the /webdav Context included with Tomcat 4.1.18
read-write instead of read-only, you would edit the web.xml file found in
webapps/webdav/WEB-INF/ and change the following:

<!--
 <init-param>
 <param-name>readonly</param-name>
 <param-value>false</param-value>
 </init-param>
-->

to this:

 <init-param>
 <param-name>readonly</param-name>
 <param-value>false</param-value>
 </init-param>

Also in web.xml, you can configure particular roles as listed in tomcat-users.xml,
granting them particular access to the /webdav Context. For example, to enable
access to /webdav for the user tomcat as defined in tomcat-users.xml, you would
set up the following in web.xml:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>The Entire Web Application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>tomcat</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Tomcat Supported Realm</realm-name>
 </login-config>

 <security-role>
 <description>
 An example role defined in "conf/tomcat-users.xml"
 </description>
 <role-name>tomcat</role-name>
 </security-role>

Summary

21

Once you have granted and enabled read-write access, you can reach the /webdav
Context by pointing to the /webdav path of your Tomcat installation using your
WebDAV client.

Tomcat 4 uses the Jakarta Slide WebDAV module, implemented as a servlet, to provide
WebDAV services. For more info on Jakarta Slide, visit
http://jakarta.apache.org/slide/index.html and for more info on WebDAV itself, visit
http://www.webdav.org/. For other links and more information on Tomcat's
implementation of WebDAV, consult the http://localhost:8080/webdav/index.html URL of
your Tomcat installation.

Summary
As pointed out by the Open Web Application Security Project, misconfiguration and
improper installation of web and application servers can be a serious problem and
adversely affect the integrity of your web application and its components. In addition,
neglecting to analyze things like remote administration applications that may be
included can be another cause for problems. In this chapter we discussed:

❑ The top ten web application vulnerabilities as listed by the Open Web
Application Security Project

❑ Proper installation of Tomcat as a service running under an unprivileged
user account

❑ Using a local firewall to add additional layers of security to network traffic

❑ Managing Connectors in server.xml so only those needed are enabled

❑ Proper management of default applications and Contexts included with
Tomcat to minimize possible entry points for attacks

In short, it is up to the server administrator to be proactive and manage the default
installation of any web or application server under their control. By merely accepting
the defaults, an administrator leaves themselves open to more potential attack points
and may even compromise their installation, since they are simply trusting someone
else to ship the product with secure defaults.

Chapter 1: Understanding Tomcat Security

22

