
Excerpt
from Manning Publications

WebWork in Action
by

Patrick Lightbody
and Jason Carreira
 HelloWorld,
the WebWork way
This chapter covers
■ How to set up a WebWork project
■ How to create your first WebWork action
■ Input and output of data from your action
■ An introduction to the WebWork JSP tag library
19

20 CHAPTER 2

HelloWorld, the WebWork way
In this chapter, we’ll walk through a brief example that demonstrates the basics of
WebWork. By the end of this chapter, you should have enough understanding of
WebWork to build simple web-based applications. Later in the book, you’ll expand
on what you learned here to do more advanced configurations and take advantage
of advanced features including validation, internationalization, scripting, type
conversion, and support for display formats other than HTML, such as PDF.

2.1 Downloading WebWork

Before you begin, you must download WebWork. You can find the latest version
(2.1.7 at the time of this writing) at http://webwork.dev.java.net/servlets/Project-
DocumentList. Once you’ve downloaded the distribution binary, such as web-
work-2.1.7.zip, you need to unzip it. Inside, you’ll find sample applications,
documentation, and the source code of the framework so you can see how it
works. You’ll also find all the JAR files required to get WebWork running.

 We highly recommend that you examine all the documentation and sample
code, but for now we’re only concerned with the required libraries and the Web-
Work JAR. Let’s begin by preparing the basic web application file structure so that
you can start building applications.

2.2 Preparing the skeleton

The basic web application file structure, also known as the skeleton, is the bare min-
imum required to begin building the sample applications you’ll explore in this
chapter. You need the files listed in table 2.1, which are found in the download-
able WebWork distribution.

Table 2.1 Files required to set up a WebWork web application

 Filename Description

 xwork.jar XWork library on which WebWork is built

 commons-logging.jar Commons logging, which WebWork uses to support transparently logging to
either Log4J or JDK 1.4+

 oscore.jar OSCore, a general-utility library from OpenSymphony

 velocity-dep.jar Velocity library with dependencies

 ognl.jar Object Graph Navigation Language (OGNL), the expression language used
throughout WebWork
For more information or to order WebWork in Action, visit the Manning website

http://webwork.dev.java.net/servlets/ProjectDocumentList
http://webwork.dev.java.net/servlets/ProjectDocumentList
http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Preparing the skeleton 21
Some files, especially configuration files, aren’t included in the distribution; you’ll
create them in a moment. Also note that the version numbers of the dependent
JAR files (such as oscore.jar and ognl.jar) can be found in the distribution in the
file versions.txt, located in the lib directory.

 As usual for J2EE web applications, JARs go in the WEB-INF/lib directory and
web.xml goes in the WEB-INF directory. As is most often the case, configuration
elements such as xwork.xml go in the WEB-INF/classes directory. Having done
that, your directory layout should appear as follows:

 / (Root)
 |---WEB-INF
 |---web.xml
 |---classes
 | |---xwork.xml
 |---lib
 | |---webwork-2.1.7.jar, xwork.jar, oscore.jar, ognl.jar, ...

NOTE Now that the directory structure is set, you must configure your web ap-
plication server (such as Resin, Orion, or Apache Tomcat) to deploy the
web app starting from the location marked Root. How you deploy it de-
pends on the server you’re using and whether you zip the directory lay-
out as a WAR beforehand. Consult your server’s documentation for
detailed instructions on deploying web apps such as this one. We also
suggest that you consult your IDE’s documentation to be able to deploy
your web application directly from the IDE, either by using a plug-in or
by starting the container’s main class as an executable.

2.2.1 Creating the web.xml deployment file

In order for WebWork to work properly, it needs to be deployed in such a way that
certain URL patterns, such as *.action, map to a WebWork servlet that is responsi-
ble for handling all WebWork requests. A URL pattern is a pattern that is matched
against all incoming HTTP requests (such as from web browsers). If the location,
also known as a resource, matches the pattern, the associated servlet is invoked.
Without this servlet, WebWork wouldn’t function.

 xwork.xml WebWork configuration file that defines the actions, results, and intercep-
tors for your application

 web.xml J2EE web application configuration file that defines the servlets, JSP tag
libraries, and so on for your web application

Table 2.1 Files required to set up a WebWork web application (continued)

 Filename Description
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

22 CHAPTER 2

HelloWorld, the WebWork way
 You must first add the following entry to web.xml:

 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>
 com.opensymphony.webwork.dispatcher.ServletDispatcher
 </servlet-class>
 </servlet>

The next step is to map the servlet to a URL pattern. The pattern you choose can
be anything you want, but the most typical pattern is *.action. You can configure
the pattern the servlet will match by adding the following to web.xml:

<servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>
</servlet-mapping>

Finally, in order to use WebWork’s tag library, you must add an entry to web.xml
indicating where the tag library definition can be found:1

<taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/lib/webwork-2.1.7.jar
 </taglib-location>
</taglib>

You can add many other optional configuration items to web.xml, such as support
for JasperReports, Velocity, FreeMarker, and other view technologies. Because
you’re building a skeleton application with no other files or configuration ele-
ments, the final web.xml file should look like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
 <web-app>
 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>
 com.opensymphony.webwork.dispatcher.ServletDispatcher
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>

1 In newer servlet containers that fully support the JSP 1.2 specification, the taglib should be automatical-
ly picked up without any configuration.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Preparing the skeleton 23
 </servlet-mapping>
 <taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/lib/webwork-2.1.7.jar
 </taglib-location>
 </taglib>
</web-app>

This is the most basic web.xml file you can use for a WebWork application. Most
likely, your web.xml will quickly grow to include additional servlets, tag libraries,
event listeners, and so on.

2.2.2 Creating the xwork.xml configuration file

Now that you’ve configured web.xml correctly, you need to set up a skeleton con-
figuration for WebWork itself. Because WebWork is based on a subproject, XWork,
the configuration file is named xwork.xml and is located in WEB-INF/classes, as
previously shown. We’ll discuss configuration in more detail in chapter 3, “Setting
up WebWork,” so don’t worry too much about the contents of this file. For now,
the skeleton setup requires just the following in xwork.xml:

 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include file="webwork-default.xml"/>

 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="completeStack"/>
 </package>
 </xwork>

The key thing to note here is that a file, webwork-default.xml, is included. Doing this
ensures that all the WebWork additions built on top of XWork are available to you.
This file contains the standard configuration for WebWork, so it’s very important
that it be included. Without this file, WebWork wouldn’t function as you’d expect,
because it wouldn’t be correctly configured. Note that you don’t need to have a file
named webwork-default.xml—it’s already included in the WebWork JAR file.

2.2.3 Creating the webwork.properties configuration file

Just as you placed xwork.xml in WEB-INF/classes, you also need to add a file called
webwork.properties to that directory. Like other aspects of WebWork configura-
tion, the contents of this file are discussed in chapter 3. For now, add the following
line to webwork.properties:

webwork.tag.altSyntax = true
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

24 CHAPTER 2

HelloWorld, the WebWork way
This line is required because every example in this chapter (and the rest of the
book) is given with the assumption that webwork.tag.altSyntax is set to true. We
did this to let you have the most up-to-date information about a framework that is
always evolving. At the time of this writing, WebWork 2.1.7 is the latest released
version. However, we already know that as of WebWork 2.2, altSyntax will become
standard; so, we felt it would be best to cover this syntax now rather than teach
something that is on the verge of changing.

2.2.4 Tips for developing WebWork apps

You’re now ready to begin building your first example application. In order to do
so, you must compile Java sources and copy the resulting .class files to WEB-INF/
classes. There are several ways to do this, including executing javac by hand, using
an Ant build script, or using an IDE such as Eclipse or JetBrains IntelliJ IDEA (for-
merly IntelliJ IDEA). You should choose whatever method you’re most comfortable
with. In the CaveatEmptor example used in the rest of the book, you’ll find project
files for IDEA as well as an Ant build script to help you get started. Feel free to use
and modify the supplied build scripts and project files for your own projects.

 Using an IDE may be a better approach because you can launch the applica-
tion server, debug, and edit all within the same environment. Without these fea-
tures, you have to manually stop and start your application server from the
command line whenever you make changes to the code in your applications. If
you haven’t tried using a full-featured IDE with J2EE application server support, we
highly recommend doing so.

2.3 Your first action

Let’s start by creating a simple WebWork action. An action is a piece of code that is
executed when a particular URL is requested. After actions are executed, a result
visually displays the outcome of whatever code was executed in the action. A result
is generally an HTML page, but it can also be a PDF file, an Excel spreadsheet, or
even a Java applet window. In this book, we’ll primarily focus on HTML results,
because those are most specific to the Web. As Newton’s Third Law states, every
action must have a reaction.2 Although not “equal and opposite,” a result is always
the reaction to an action being executed in WebWork.

 Suppose you want to create a simple “Hello, World” example in which a
message is displayed whenever a user goes to a URL such as http://localhost/

2 An action doesn't technically have to have a result, but it generally does.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Your first action 25
helloWorld.action. Because you’ve mapped WebWork’s servlet to *.action, you
need an action named helloWorld. To create the “Hello, World” example, you
need to do three things:

1 Create an action class: HelloWorld.

2 Create a result: hello.jsp.

3 Configure the action and result.

Let’s begin by writing the code that creates the welcome message.

2.3.1 Saying hello, the WebWork way

Start by creating the action class, HelloWorld.java, as shown in listing 2.1.

 package ch2.example1;

 import com.opensymphony.xwork.Action;

 public class HelloWorld implements Action {
 private String message;

 public String execute() {
 message = "Hello, World!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }
 }

The first and most important thing to note is that the HelloWorld class imple-
ments the Action interface. All WebWork actions must implement the Action
interface, which provides the execute() method that WebWork calls when execut-
ing the action.

 Inside the execute() method, you construct a “Hello, World” message along
with the current time. You expose the message field via a getMessage() JavaBean-
style getter. This allows the message to be retrieved and displayed to the user by
the JSP tags.

Listing 2.1 HelloWorld.java
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

26 CHAPTER 2

HelloWorld, the WebWork way
 Finally, the execute() method returns SUCCESS (a constant for the String “suc-
cess”), indicating that the action successfully completed. This constant and others,
such as INPUT and ERROR, are defined in the Action interface. All WebWork actions
must return a result code—a String indicating the outcome of the action execution.
Note that the result code doesn’t necessarily mean a result will be executed,
although generally one is. You’ll soon see how these result codes are used to map
to results to be displayed to the user. Now that the action is created, the next logi-
cal step is to create an HTML display for this message.

2.3.2 Displaying output to the web browser

WebWork allows many different ways of displaying the output of an action to the
user, but the simplest and most common approach is to show HTML to a web
browser. Other techniques include displaying a PDF report or a comma-separated
value (CSV) table. You can easily create a JSP page that generates the HTML view:

<%@ taglib prefix="ww" uri="webwork" %>
 <html>
 <head>
 <title>Hello Page</title>
 </head>
 <body>
 The message generated by my first action is:
 <ww:property value="message"/>
 </body>
</html>

The taglib definition in the first line maps the prefix ww to the URI webwork. (Note
that the URI is the same as that in the web.xml file.) A prefix of ww indicates that
all the WebWork tags will start with ww:.

 As you can see, this is a simple JSP page that uses one custom WebWork tag:
property. The property tag takes a value attribute and attempts to extract the
content of that expression from the action. Because you created a getMessage()
method in the action, a property value of message results in the return value of a
getMessage() method call. Save this file in the root of your web application, and
call it hello.jsp.

 Again, this example is extremely basic. In later chapters, we’ll go over many
other WebWork tags that can help you create dynamic web sites without using any
Java code in your JSPs, using a simple expression language called the Object
Graph Navigation Language (OGNL).
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Your first action 27
2.3.3 Configuring your new action

Now that you’ve created both the action class and the view, the final step is to tie
the two together. You do so by configuring the action to a particular URL and map-
ping the SUCCESS result to the JSP you just created. Recall that when you created
the skeleton layout, you generated a nearly empty xwork.xml file. You’ll now add
some meaningful values to this file and see the final WebWork action work.

 When you’re configuring a WebWork action, you must know three things:

■ The full action class name, including the complete package

■ The URL where you expect the action to exist on the Web

■ All the possible result codes the action may return

As you know from the previous Java code, the action class name is
ch2.example1.HelloWorld. The URL can be anything you like; in this case, we
choose /helloWorld.action. You also know that the only possible result code for
this action is SUCCESS.

 Armed with this information, let’s modify xwork.xml to define the action:

<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include file="webwork-default.xml"/>

 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="completeStack"/>

 <action name="helloWorld"
 class="ch2.example1.HelloWorld">
 <result name="success">hello.jsp</result>
 </action>
 </package>
</xwork>

In this file, you’ve now made a direct correlation between an action name (hel-
loWorld) and the class you wish to be executed. So, any HTTP request to /hel-
loWorld.action will invoke your new action class. You also made a direct
correlation between the result code SUCCESS (a String constant for "success")
and the JSP that you just created to display the message.

 With xwork.xml saved, the action class compiled and copied to WEB-INF/
classes, and hello.jsp added to the root of the web application, you’re ready to fire
up the application server and try this new action. Consult your application
server’s documentation for detailed instructions on how to start, stop, and deploy
web applications like this one.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

28 CHAPTER 2

HelloWorld, the WebWork way
And that’s it! You can now point your web browser to the action URL, such as
http://localhost/helloWorld.action,3 to see the final product shown in figure 2.1.

NOTE The message returned by this action isn’t very friendly to the eye: The
time (displayed as 1073357910) is pretty hard to read. Don’t despair—in
chapter 14, “Internationalization,” we’ll show you how easy it is to display
locale-specific dates to the user.

As you can see, this isn’t the most exciting web page, so let’s spice it up. You’ll
make the greeting generated by this action customizable by letting users enter
their name and be personally greeted. Up to this point, you’ve seen an action that
is read-only; now you’ll learn how to handle inputs and read-write actions.

2.4 Dealing with inputs

Now that you know how to build a simple action, let’s take it up one notch and
add the ability to personalize the message. You’ll build on the existing code. First,
create another HTML page that asks for the user’s name. Create the following file,
name.jsp, in the same directory as hello.jsp:

3 Depending on the servlet container and the configuration, this URL could include a port number like
8080.

Figure 2.1
The first "Hello World" action
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Dealing with inputs 29
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 Please enter your name:
 <form action="helloWorld.action">
 <input type="textfield"
 name="name"/>
 <input type="submit"/>
 </form>
 </body>
</html>

Note that the form is being submitted to helloWorld.action—the same location
you used to display the previous example. Since you’re expanding on the previous
example, you’ll continue to use this location. Another important point is that the
textfield input is named name. Just as message was the property you used to display
(get) the message, name is the property you use to write (set) the user’s name.

 Next, you need to tweak the HelloWorld action to construct the personalized
message. The new action code looks like this:

package ch2.example1;

 import com.opensymphony.xwork.Action;

 public class HelloWorld implements Action {
 private String message;
 private String name;

 public String execute() {
 message = "Hello, " + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }

 public void setName(String name) {
 this.name = name;
 }
bbbbbpublic String getName(){
bbbbbbbbbreturn this.name;
bbbbb}
}

For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

30 CHAPTER 2

HelloWorld, the WebWork way
This code adds two things to the previous example. The first new item is a field
and corresponding JavaBean-style set method named name. This must match
exactly the name of the textfield you used in name.jsp. You also personalize the
message that is constructed by including the name in the message during the exe-
cute() method. In WebWork, values are always set (via the setXxx() methods such
as setName()) before the execute() method is called. That means you can use the
variables in the execute() method while assuming they have already been popu-
lated with the correct value.

 That’s it! Recompile the action class, and start your application server. Now
point your web browser to http://localhost/name.jsp, enter a name, and see that
the message (shown in figure 2.2) is now personalized.

 As easy as that was, a few problems can result. For instance, what if the user
doesn’t enter any data? The greeting will end up saying “Hello, !” Rather than
show an ugly message, it might be better to send the user back to the original
page and ask them to enter a real name. Let’s add some advanced control flow to
this action.

Figure 2.2
The new greeting is personalized. In
this case, we used the name Patrick
as the input.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Advanced control flow 31
2.5 Advanced control flow

Because you want the action to show either the message result (hello.jsp) or the
original input form (name.jsp), you have to define another result in xwork.xml.
You do this by changing the action entry to the following:

<action name="helloWorld"
 class="ch2.example1.HelloWorld">
 <result name="success">hello.jsp</result>
 <result name="input">name.jsp</result>
</action>

Now, if the execute() method in the HelloWorld action returns the String “input”
(also defined as a constant, INPUT, in the method), the result of the action will be
name.jsp rather than hello.jsp. In order to spice up this example a little more,
let’s also not allow the String “World” to be entered as a name. Editing the action
to support these checks results in the following execute() method:

 public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
bbbb}

If the name doesn’t pass your validation rules, you return a result code of INPUT
and don’t prepare the message. With just a couple lines of code, the control flow
of this action has doubled the number of possible results the action can display.
However, this still isn’t as interesting as it could be, for two reasons:

■ When you return to the INPUT, users can’t see why they’re back on this page.
Essentially, there is no error message.

■ Users can’t tell what they originally entered as the name value. It might be
nothing, or it might be World. It would be better if the input box displayed
what the user original entered.

In order to address both concerns, let’s modify the input result to display an error
message. You can reuse the message property from the success result. Then, add
logic to display an error message as well as make the textfield input display the
previous name in the event of an error. With the modifications in place, name.jsp
now looks like this:
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

32 CHAPTER 2

HelloWorld, the WebWork way
<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:if test="message != null">

 <ww:property value="message"/>

 </ww:if>
 Please enter your name:
 <form action="/helloWorld.action">
 <input type="textfield"
 name="name"
 value="<ww:property value="name"/>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

This code adds two significant things to the JSP. First, if an error message exists,
it’s printed in a red font. You use the ww:if tag to see whether the message prop-
erty exists; if it does, you print it. If a user goes to this page directly, the test fails,
and no error message is reported—exactly the behavior you’re striving for.

 Second, you add a value attribute to the input HTML element. This attribute
defines the default value to be displayed when the page is first loaded. Because the
ww:property tag returns an empty String if a property isn’t found, it also results in
the desired behavior. After the action has been submitted once, the property
exists. As such, if the INPUT result occurs, the value previously entered is displayed.

 Finally, let’s modify the action’s execute() method one more time. This time,
you’ll make sure an error message is set in the message property just before the
action returns with the INPUT code. The new method looks like this:

public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 message = "Blank names or names of 'World' are not allowed!";
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
}

For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Letting WebWork do the work 33
The most important thing to note here is that the execute() method is prevented
from finishing and returns with INPUT if the name fails the validation check.

 With these small changes, you’re ready to try the new behaviors. Start your
application server, and point your browser to http://localhost/name.jsp. Enter in
the value World for the name textfield and submit the form, and you should see
the screen shown in figure 2.3.

 This type of control flow, validation, and error reporting is often required for
forms in web applications. Rather than leave the developer to handle these tasks,
WebWork provides help that does almost all the work for you. In the next section,
we’ll explore how you can convert this example to use the reusable components
that WebWork provides.

2.6 Letting WebWork do the work

One of the most common tasks developers want to perform when building web appli-
cations is to build input widgets, such as drop-down selection boxes or textfields, that
all have a standard behavior. This includes displaying error messages about data as
well as ensuring the original value is displayed in the case of an error. In addition,
developers almost always want the widgets to have a common look and feel.

 Because this is such a common need, WebWork provides support for it. Rather
than code all the if-else error message logic in your JSPs and actions, you can take

Figure 2.3
The “Hello World” example when
an invalid name is entered
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

34 CHAPTER 2

HelloWorld, the WebWork way
advantage of WebWork’s helper classes and JSP tags to do the work for you. You’ll
now convert the previous example to use these classes and tags so you can see the
most common way WebWork applications are built.

2.6.1 Taking advantage of ActionSupport

You’ll start by converting the HelloWorld action to take advantage of a helper class
called ActionSupport. Rather than implement the com.opensymphony.xwork.Action
interface, you’ll modify your class to extend com.opensymphony.xwork.ActionSup-
port. ActionSupport provides a method called addFieldError() that you can use to
report error messages. Listing 2.2 shows the modified class.

package ch2.example1;

import com.opensymphony.xwork.ActionSupport;

public class HelloWorld extends ActionSupport {
 private String message;
 private String name;

 public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 addFieldError("name",
 "Blank names or names of 'World' are not allowed!");
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Listing 2.2 HelloWorld.java, modified to extend ActionSupport
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Letting WebWork do the work 35
As you can see, little has changed. In fact, only two lines have been modified: The
action now extends ActionSupport, and you no longer set the error message to
the message property but rather call addFieldError(), which is provided by
ActionSupport. This new method takes two arguments:

■ name—The property to which this error message relates

■ message—The error message itself

Because the error message is about the name property, you pass the String “name”
as the first argument. The second argument is the same error message you previ-
ously assigned to the message property. Although there isn’t a significant differ-
ence between the old action code and the new code, keep in mind that you’re
only reporting an error on a single property. Imagine that you have 10 or 15 prop-
erties—do you really want to maintain 10 or 15 error message properties as well?

2.6.2 Intermediate modifications to the JSP

The next step is to modify the JSP to take advantage of the new ActionSupport
class structure. Because ActionSupport provides a method, getFieldErrors(),
that returns a java.util.Map of error messages, the new JSP looks like this:

<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:if test="fieldErrors['name'] != null">

 <ww:property value="fieldErrors['name']"/>

 </ww:if>
 Please enter your name:
 <form action="/helloWorld.action">
 <input type="textfield"
 name="name"
 value="<ww:property value="name"/>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

The code includes only one change: In the area where the error message is
printed, the value attribute has changed from message to fieldErrors['name'].
Right about now, you may be asking yourself, “Didn’t they say this was supposed to
be better?” You’re right that this code looks more confusing. Fortunately, you’re
not finished changing the JSP. Don’t worry; it gets easier—a lot easier.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

36 CHAPTER 2

HelloWorld, the WebWork way
 We’re showing you this JSP so you can begin to understand what’s going on in
the background. Because ActionSupport has a field called fieldErrors that is a
Map, you can reference values in that Map by using the notation map[key]. Because
the key is always the first argument of the addFieldError() method call, you pass
in a String “name”. Now that you have a basic understanding of what’s going on,
let’s create the final version of the JSP.

2.6.3 Exploring the UI tag library

At this point, the change you made to the JSP has added more complexity rather
than made it easier to work with. But you’re not finished with it. WebWork comes
with a complete UI tag library that helps you quickly write web applications with a
standard look and feel. Let’s add a UI tag to take care of the textfield input as well
as display the error message:

<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:form action="helloWorld">
 <ww:textfield label="Please enter your name:"
 name="name"/>
 <input type="submit"/>
 </ww:form>
 </body>
</html>

You may be looking at the previous JSP and wondering, “Where did everything
go?” Without getting into too much detail (you’ll learn all about UI tags in chap-
ter 11), we’ll explain what the new ww:textfield tag does.

 The WebWork UI tag library contains a tag for every HTML form element
(select, textfield, checkbox, and so on), and you can even write custom compo-
nents easily. Each tag provides a standard label, error reporting, font coloring, and
more. In this case, you’ve replaced the hand-coded HTML for error reporting,
labeling, and font coloring with a single call to a UI tag that does all this for you.

 These tags assume that the action extends ActionSupport (or at least provides
a getFieldErrors() method) to show error messages for that field. This is the pri-
mary reason that 99 percent of all WebWork actions extend ActionSupport rather
than implement the Action interface. Using the UI tag library and ActionSupport,
you can create large, complex forms in almost no time.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

Summary 37
2.7 Summary

In this chapter, we showed you how to build a simple web application and then
expand on it to introduce more complex flow control and validation rules. By
doing this, you discovered what a typical WebWork application looks like—one
that takes advantage of ActionSupport and the UI tag library. Whereas the first two
examples were simple in nature, the third example provided more functionality
and a better look and feel, all while containing less code. The idea that less is
more and that simplicity can be achieved through component reuse is a theme in
WebWork that will reoccur throughout this book.
For more information or to order WebWork in Action, visit the Manning website

http://www.manning.com/affiliate/idevaffiliate.php?id=145_9

