
Eight Reasons ECperfTM is the Right Way to
Evaluate J2EETM Performance
An Overview of the ECperf Benchmark

October 2001

Salil Deshpande Bruce Martin Shanti Subramanyam

The Middleware Company The Middleware Company Sun Microsystems

salil@middleware-company.com bruce@middleware-company.com shanti.subramanyam@sun.com

The Middleware Company
PO Box 80049 Austin, TX 78708-0049
Austin, TX USA
1 (877) 866-5282
http://www.middleware-company.com

901 San Antonio Road
Palo Alto, CA 94303 USA

http://www.sun.com/
http://java.sun.com/

http://java.sun.com/j2ee/ecperf/

 2

Table of Contents

TABLE OF CONTENTS...2

1 INTRODUCTION..3

2 WHY ECPERF?...3
SUMMARY ..6

3 ECPERF EXPLAINED...7
3.1 THE BENCHMARK APPLICATION ..7

3.1.1 The Customer Domain ..8
3.1.2 The Manufacturing Domain ...8
3.1.3 The Supplier Domain ..9
3.1.4 The Corporate Domain...9
3.1.5 Drivers and Supplier Emulation...9

3.2 THE SPECIFICATION ..9
3.3 WHAT ECPERF IS NOT...9

4 MEASURING AND REPORTING SYSTEM PERFORMANCE... 10
4.1 CHARACTERIZING THE SYSTEM BEING TESTED ... 10
4.2 CHARACTERIZING THE SYSTEM’S PERFORMANCE .. 10
4.3 PRICING THE SYSTEM UNDER TEST.. 10
4.4 DISCLOSING THE RESULTS ... 10
4.5 PROCEDURES FOR SUBMITTING RESULTS.. 11

5 ECPERF RESULTS.. 12
5.1 ECPERF SUMMARY REPORT.. 12
5.2 ORDERS SUMMARY REPORT ... 14
5.3 MANUFACTURING SUMMARY REPORT ... 15

6 CONCLUSIONS.. 15

7 REFERENCES .. 15

8 ABOUT THE AUTHORS.. 16

 3

1 Introduction

Since its introduction over three years ago, Enterprise JavaBeans (EJB)TM technology has
maintained unprecedented momentum among platform providers and enterprise development teams
alike. This is due to fact that the EJB server-side component model simplifies development of
middleware components that are transactional, scalable, and portable. J2EE application servers
supporting EJB technology reduce the complexity of developing middleware by providing
automatic support for middleware services such as transactions, security, database connectivity, and
more. To accomplish this, J2EE application server products assume all the burden of this
complexity, and are gradually becoming the operating system on which all future server-side
applications will be built.

The increasing complexity of J2EE application server products therefore has made their
performance evaluation and benchmarking somewhat of a black art. Evaluating J2EE products has
required a lot of effort and can be very subjective. Some evaluation criteria, such as quality of
vendor support and company viability, are necessarily subjective. On the other hand, other criteria,
such as performance, scalability, standards conformance and correctness of the implementation need
not be subjective if carefully crafted, realistic benchmarks and well defined procedures for running
those benchmarks are available.

This paper describes in detail the most objective method devised to date for evaluating the
performance of J2EE application servers: ECperfTM[1].

ECperf has been developed by the Java Community, through the Java Community Process, and
published as a standard benchmark for J2EE Enterprise Application Servers.

Some of the unique aspects of the ECperf benchmark are that ECperf is a real-world application
with the right level of complexity, that there are strict guidelines for reporting, reviewing, and
publishing results, and that the Total Cost of Ownership (TCO) of the system running the
benchmark must be included when reporting results.

Section 2 begins this paper by stating the reasons that make ECperf the right way to evaluate J2EE
application servers.

Section 3 provides an overview of the ECperf benchmark application, which not only lends support
to the statements made in Section 2, but can also be used as a substitute for reading the 100-page
ECperf specification document.

Sections 4 provides further information about ECperf’s specified process of measuring and reporting
system results, and Section 5 provides results of a system we recently tested, as a sample.

2 Why ECperf?

ECperf is an excellent benchmark for measuring the performance and scalability of J2EE enterprise
applications, for the following eight reasons:

Reason # 8 ECperf is gaining acceptance in the community as an independent and
neutral benchmark

ECperf was created by Sun Microsystems with the assistance of the Java community to objectively
measure the performance of J2EE application servers. Practitioners who focus on EJB have been

 4

touting ECperf since its inception. Industry research firms and analysts have been learning more
about ECperf and in recent months are recommending it as the only objective way to evaluate J2EE
application servers[2].

Reason # 7 ECperf has an application server focus

Other benchmarks do exist[3] to measure the performance of the client tier, web server tier, or
the database server, but not the middle tier. ECperf, on the other hand, measures the
performance of operations on business objects in the middle tier.

In small to medium sized applications, the middle tier is often unimportant. Today, such
applications are constructed as a combination of web presentation technology (e.g., Servlets &
JSP) and database technology.

However, the middle tier becomes much more important as the application increases in size and
complexity, or in the number of users or transactions it must handle. The center of the
application becomes the middle tier – the application server.

The performance and scalability of the application server, therefore, has a major impact on the
long term health and cost of ownership of enterprise applications. And a benchmark that
focuses on the application server is crucial in judging the quality of the application server.

Reason # 6 ECperf exemplifies modern software development techniques

The ECperf application is designed and implemented as a set of interacting reusable and
modular Enterprise JavaBeans (EJB). The application design reflects the state of the art in the
design and implementation of distributed applications.

Contrast this to other benchmarks, which are designed only to “make things go fast” or measure
certain specific functionality, and are horrible examples of how one would really architect,
design, and code a real-world application.

This aspect of ECperf becomes even more important as more and more companies move to
basing their applications on EJB. These should use ECperf during their selection process for
development and deployment environments.

Reason # 5 ECperf is “real-world” and has the right level of complexity

The primary goal of the ECperf workload is to model the performance and scalability of J2EE
enterprise applications as seen and implemented by real customers. Isolated low-level, or “unit”
benchmarks, such as tests of client-server round-trip requests, are insufficient as real-world
benchmarks, because they test the performance of simple operations but not of complete
applications.

The ECperf benchmark has the characteristics of real-world systems. For reasons of interest,
scope, and familiarity, ECperf uses manufacturing, supply chain management, and
order/inventory as the “storyline” of the business problem. This is a meaty, industrial-strength
distributed application. It is heavyweight, mission-critical, worldwide, 7x24, and necessitates
use of a powerful, scalable infrastructure. Many Fortune 500 companies are interested in this
application domain because they base their businesses on such IT systems.

 5

Read Section 3 to learn more details, and Section 3.1 in particular, for a detailed description of
the benchmark application.

The ECperf application captures intra-, extra-, and inter-company business processes. The
application is easy to understand, straightforward to deploy, and run in reasonable time with
excellent repeatability. ECperf thus has the right level of complexity for evaluating how real
enterprise applications would perform on the J2EE environment being tested.

Reason # 4 ECperf measures the completeness, compliance, and scalability of a J2EE
environment

The business problem that the ECperf application addresses, necessitates the use of distributed
worldwide services and data whose exact location is not known in advance. The application
manages persistent data, and needs to be highly available and secure.

In order to meet these requirements, ECperf uses the services required by enterprise
applications, as defined by J2EE, including transactional components, distributed ACID
transactions, naming services, object (enterprise bean) persistence (both bean-managed and
container-managed), and others.

The business problem requires a completely scalable infrastructure. As the size of the modeled
business grows, the services, the amount of data, the size of data, the number of users, the
number of interactions per user, the number of transactions per time period, and the number of
geographically distributed sites also grow. To cope, the server environment must adjust the
sizes or numbers of CPUs, memory, application server instances, Java virtual machines,
threads, clusters, connection pools, databases, and much more. “Scalability” is a measure of
how well an application server makes use of these additional resources.

ECperf measures how effectively a J2EE environment scales. This aspect of ECperf, especially
combined with the aspect of Total Cost of Ownership (Reason #1), makes ECperf the obvious
way to compare J2EE application servers.

All J2EE compliant application server products should be able to run ECperf. As such, the
performance and scaling capabilities of different application servers can be compared.

This ensures that the application server running the ECperf benchmark is indeed a compliant,
robust and complete implementation of the J2EE standard.

The J2EE certification test suite, of course, contains numerous unit tests for J2EE compliance.
However, ECperf is the first large compliant application developed via the Java Community
Process that will stress test much of the J2EE funcationality all at once, in a non-trivial manner.

Beware of the J2EE compliance of application servers that “cannot run” the ECperf application
out of the box.

For more information on J2EE compliance, completeness, and compatibility, please visit
http://java.sun.com/j2ee/compatibility.html.

Reason # 3 ECperf prohibits the modification of the application code and the SQL it
executes

With ECperf, the benchmark measures the performance and scalability of an entire application.
ECperf prohibits the modification of the application and the SQL the application executes. As

 6

such, the benchmark results from different application servers are comparable. Application
server vendors are forced to focus on the tuning of the application server itself and not allowed
to play games by tweaking the application or its SQL.

On the other hand, ECperf does not prohibit, but encourages, the modification of deployment
aspects of the application. Deployment aspects include the content of deployment descriptors,
how the application is packaged, how many containers, machines, Java virtual machines,
clusters are in the deployed system, how beans are allocated to containers, etc. This provides
the flexibility needed to get the best run time performance and scalability out of an application
server.

Reason # 2 ECperf specifies guidelines on how to submit, report, and publish results

Many benchmarks, and their results, are malleable and can be susceptible to being twisted into
whatever an application server vendor wants to demonstrate. This is especially true of
“benchmarks” invented by application server vendors, but can also be true of independent
benchmarks.

To avoid this problem, the ECperf Expert Community has created strict guidelines on
submitting and reporting results, which prevent such twisting. The guidelines ensure that the
results of the benchmark are accurate, and can be verified and duplicated given the appropriate
software and documentation. These guidelines are described in sections 4.4 and 4.5.

Reason # 1 ECperf helps you estimate the Total Cost of Ownership (TCO) of an
application over time

An ECperf test produces a price-performance metric, the price per business operation per
minute. A complete system configuration is priced, the benchmark is run and the metric is
calculated by dividing the total system price by the number of business operations per minute.

The cost of the system must be reported with the results.

The cost of the system includes:

� the hardware cost (application server & database server machines)
� any operating system cost
� and the cost of the application server and database server license(s).

This aspect of ECperf makes the results of the benchmarks across application server products,
operating systems, and hardware, especially accurate and useful.

As you scale the tested system to meet hypothesized increased demand, you reprice the tested
system, rerun the benchmark and recompute the price-performance metric. This estimates how
much the application will cost over time as your needs grow.

Summary

This section outlined the reasons for the appropriateness of ECperf that, in our experience, are
applicable to most environments. Not all of these reasons may apply to yours; however, most
will, or should.

 7

To provide support to the statements made in this section, the next section provides an
overview of the ECperf benchmark application.

3 ECperf Explained

ECperf is an Enterprise JavaBeans (EJB) benchmark meant to measure the scalability and
performance of J2EE servers and containers. It consists of:

� A benchmark application and associated drivers, written in the Java programming
language for the J2EE platform.

� A detailed specification for testing and submitting results

3.1 The Benchmark Application

The benchmark application is meant to be a realistic enterprise application for a global corporation.
The intention is for it to be simple enough to understand and measure, yet complex enough to be
realistic.

The benchmark application is structured as Enterprise JavaBeanTM components. It is intended to run
on any J2EE compliant product.

The application is delivered as a complete “kit” that includes the Enterprise JavaBeans, a set of Java
ServerPagesTM for single user/interactive testing, schema scripts and load programs to create and
load the database(s) and driver programs to implement the run rules and simulate the client load. All
Java source code and make files are included.

The ECperf application implements manufacturing, supply chain management, and order/inventory
for a large global enterprise. As shown in Figure 1, the application consists of four application
domains: manufacturing, supplier & service provider, customer, and corporate. It is assumed that
each domain has separate databases and applications. Most likely, they are implemented on separate
computing hardware. Since large corporations have often merged with other corporations, the
various application domains may themselves be very heterogeneous.

Customer
Domain

Manufacturing
Domain

Supplier and
Service Domain

Corporate
Domain

F

I

R

E

W

A

L

L

Suppliers

Customers

Figure 1 – The ECPerf Application

System Under Test

 8

There are producer-consumer relationships between domains in the company and to outside
suppliers and customers as well.

Customers contact the business through any number of methods, including through the web, over the
telephone or through a salesperson. All of these methods map into this web access scheme because
the customer service representative or salesperson themselves use the web interface. All of the
worldwide offices and plants make frequent access to data held in the other offices or plants, and
must, at times, compare/collate/verify their data against that held worldwide.

The company also interacts with completely separate supplier companies. Each supplier has its own
independent set of computing resources.

3.1.1 The Customer Domain

Work in the customer domain is OLTP in nature. An order entry application supports adding new
orders, changing an existing order and retrieving status of a particular order or all orders of a
particular customer.

Orders are placed by individual customers as well as by distributors. The difference between the two
is in the quantity of items ordered. Approximately 57% of work on the system are large orders from
distributors and 43% are regular orders from individual customers.

A credit check is performed on the customer by sending a request to the corporate domain. Various
discounts are applied to the order depending on whether the customer is a distributor, repeat or first-
time customer, etc.

Existing orders may be changed. The quantities of ordered items may be changed or the order may
be cancelled in its entirety. Orders that have already shipped or have entered the shipping process
cannot be cancelled.

3.1.2 The Manufacturing Domain

This domain models the activity of production lines in a manufacturing plant. Planned production
lines run on schedule and produce a pre-defined number of widgets. On the other hand, the other
production lines run only when a large order is received from a customer such as a distributor.

Manufacturing begins when a work order enters the system. Each work order is for a specific
quantity of a particular type of widget. The planned line work orders are typically created as a result
of a forecasting application. The large order line work orders are generated as a result of customer
orders. When a work order is created, the Bill of Materials (BOM) for the corresponding type of
widget is retrieved and the required parts are taken out of inventory. As the widgets move through
the assembly line, the work order status is updated to reflect progress. Once a work order is
complete, it is marked as complete and inventory updated.

As inventory of parts is depleted, suppliers need to be located and purchase orders need to be sent
out. This is done by contacting the supplier domain.

 9

3.1.3 The Supplier Domain

The supplier domain is responsible for interactions with suppliers. It determines which supplier to
choose based on the parts that need to be ordered, the time in which they are required and the price
quoted by suppliers. The company sends a purchase order to the selected supplier. The purchase
order includes the quantity of various parts being purchased, the shipping address and the required
delivery date. When parts are received from the supplier, the supplier domain sends a message to the
manufacturing domain to update inventory.

3.1.4 The Corporate Domain

The corporate domain manages the global list of customers, parts and suppliers. Credit information
is kept in a database in the corporate domain. This is to provide maximal security and privacy.

For each new order, the customer domain requests the corporate domain to report on the credit
worthiness of the customer. Customer discounts are also computed in the corporate domain for each
new order or whenever an order is changed..

3.1.5 Drivers and Supplier Emulation

Obviously, the benchmark cannot be driven by real customers placing actual orders, by real
manufacturing facilities producing products and by real suppliers providing goods and services.
Instead, ECperf defines and provides:

� an order entry driver that repeatedly executes business transactions in the customer
domain,

� a manufacturing driver that drives the planned and large order lines and
� a supplier emulator, implemented as a Java servlet in a separate web container to emulate

the process of sending and receiving orders to/from suppliers. The emulator and the
Supplier Domain communicate by exchanging XML documents.

The drivers are also responsible for recording all relevant statistics and for printing the reports from
the run.

3.2 The Specification

The ECperf specification provides detailed descriptions of the application, the object model
embodied in the application, the data model, the workload, the rules for running and scaling the
workload, the system being tested, the price/performance metrics and the rules for disclosing
benchmark results. Although we provide an overview of these, the specification[1] should be read
for the definitive discussion of ECperf.

3.3 What ECperf is not

ECperf is not designed to test DBMS performance and scalability. These are adequately measured
by other standard workloads such as TPC-C, TPC-D and TPC-W[2].

ECperf is also not a benchmark of client side GUI performance. It is not a test of web browser
performance. It does not test “hits” of a web server. ECperf does not test JSP/servlet performance.

 10

4 Measuring and Reporting System Performance

Besides defining the benchmark application, ECperf defines how to characterize the system being
tested, its performance and its price-performance ratio. ECperf also defines how to disclose the
results of running the benchmark. The specification is the definitive source for this information. We
summarize it here.

4.1 Characterizing the system being tested

ECperf defines the system under test, or SUT. The SUT comprises all hardware and software
components being tested including:

� the application servers
� the database servers
� the hardware and software required to support the workload and databases
� all networking components between host machines and all network interfaces to the SUT
� all components providing load balancing within the SUT
� any software and hardware used to influence the flow of traffic beyond basic IP routing

and switching

The supplier emulator and the drivers are not part of the SUT. They cannot be on machines that are
in the SUT. The intent is that they communicate with the SUT over the network.

In figure 1 a distributed system under test is graphically represented as the shaded box. The SUT
consists of the application servers for each domain, the database servers, the computers running
these and the networking components connecting them.

4.2 Characterizing the system’s performance

The term BBops/min is the primary ECperf metric and denotes the average number of successful
Benchmark Business OPerationS per minute completed during the measurement interval. A
BBop/min is defined to be the total number of business transactions completed in the customer
domain, added to the total number of work orders completed in the manufacturing domain,
normalized per minute.

4.3 Pricing the system under test

ECperf includes a price-performance metric defined as price/BBops/min. This metric is the total
price of the SUT divided by the reported BBops/minute.

The intent of the pricing rules is to price the tested system at the full price a customer would pay. All
pricing sources and effective dates of the prices must be included. The disclosed pricing must reflect
the level of detail a customer would see on an itemized billing. Clause 6 of the ECperf specification
provides more details.

4.4 Disclosing the results

A full disclosure report is required in order for results to be considered compliant with the ECperf
benchmark specification. The intent of this disclosure is for anyone to be able to replicate the results
of this benchmark given the appropriate documentation and software. Clause 7 of the ECperf
specification is the definitive source for the contents of the report. Table 1 summarizes the contents
of the report.

 11

Table 1: Information that is required to be submitted with an ECperf results report

Report Must Disclose Definition

Benchmark sponsor A statement identifying the benchmark sponsors and other participating
companies.

Configurations Diagrams of both measured and priced configurations.

Persistence type The type of persistence used (CMP, BMP or mixed mode).

Deployment descriptors All deployment descriptors used.

Software products All commercially available software products used.

Output The entire output directory from the reproducibility run.

Database setup All database table definition statements, statements used to set up the
databases and the order injection rate used to load the databases.

Client systems The number and types of client systems used, along with the number
and types of processors, memory and network configuration

Priced system A detailed list of hardware and software used in the priced system.

Sophisticated IP routing Any software/hardware used to influence the flow of network traffic
beyond basic IP routing and switching.

Load balancing Details of any load-balancing functions.

Driver input The input parameters to the driver.

Network bandwidth The bandwidth of the network(s) used in the tested/priced
configuration.

Communication
protocol

The protocol used by the Driver to communicate with the SUT (e.g
RMI/IIOP).

Transaction ACID tests The scripts/programs used to run the ECperf tests of the transaction
ACID properties.

Performance results � The BBops/minute from the reproducibility run.
� A graph of the frequency distribution of response times for all the

transactions.
� A graph of the work order throughput versus elapsed time.

4.5 Procedures for submitting results

When a test sponsor decides to publish a ECperf benchmark result, he must generate the full
disclosure report and submit it to the ECperf Review Committee by electronic mail. The ECperf
Review Committee has a minimum of two weeks to review the result and will vote on accepting it at
their regularly scheduled meeting after the two week period.

During the review period, the members of the committee will hold all review material in strict
confidentiality. Within a member company this information should be shared with only those people
necessary to provide a thorough review of the result.

 12

At the end of the review, if there are no open issues related to a given submission, the result is
approved and the full disclosure is posted on the ECperf results website. Once posted, the
information contained in the disclosure is considered public. If there are open issues for a given
submission at the end of its review cycle that have not and can not be resolved to the satisfaction of
the majority of the committee members, the committee votes that the submission is not compliant
and should not be published. The sponsor is informed of the problems with his result including all
relevant clauses of the specification that are not met.

Clause 8 of the ECperf specification provides more details.

5 ECperf Results

ECperf produces several result files. Examples of these result files are shown in figures 2, 3 and 4.
This section explains the results.

5.1 ECperf Summary Report

The ECperf Summary reports the parameters under which the benchmark was run and the
benchmark business operation result. Table 2 defines the most frequently modified parameters.

Table 2: Parameters that are most frequently modified while running the ECperf benchmark

Parameter Definition

runOrderEntry Indicates if the OrderEntry driver is to be run.

runMfg Indicates if the Manufacturing driver is to be run.

txRate Indicates the transaction injection rate. It determines how many client
threads are started and the rate at which they access the server. In
particular, 5*txRate threads are started to do order entry transactions
and 3*txRate threads are started to do manufacturing transactions for
planned lines.

rampUp Sets the number of seconds to wait before collecting statistics. The
benchmark assumes the server is in a steady state after rampUp
seconds.

rampDown Sets the number of seconds after the measurement interval that the
benchmark must continue to run

stdyState Sets the number of seconds for the measurement interval.

triggerTime Sets the number of seconds it takes for all the client threads to start up.
This depends on the number of threads being started and the JVM
being used. This value is set by trial and error.

 13

Figure 2 – ECperf Summary Report: run parameters and benchmark business operations

ECPerf Summary Report
Version : ECperf 1.0 Update 1

Run Parameters :
runOrderEntry = 1
runMfg = 1
txRate = 58
rampUp (in seconds) = 600
rampDown (in seconds) = 300
stdyState (in seconds) = 1800
triggerTime (in seconds) = 90
numOrdersAgents = 1, numMfgAgents = 1
dumpStats = 0
Benchmark Started At : Fri Oct 12 15:31:30 GMT-08:00 2001

Orders Summary report is in : Orders.summary
Orders Detailed report is in : Orders.detail
Orders Transaction Rate : 3460.13 Transactions/min

Manufacturing Summary report is in : Mfg.summary
Manufacturing Detail report is in : Mfg.detail
Manufaturing Rate : 2538.00 WorkOrders/min

ECperf Metric : 5998.13 BBops/min

 14

5.2 Orders Summary Report

Figure 3 – ECperf Orders Summary Report

Orders Summary Report
Version : ECperf 1.0 Update 1

Orders Transaction Rate : 3460.13 Transactions/min

TRANSACTION MIX

Total number of transactions = 103804
TYPE TX. COUNT MIX REQD. MIX.
---- --------- --- ----------
NewOrder: 51884 49.98% 50% PASSED
ChangeOrder: 20811 20.05% 20% PASSED
OrderStatus: 20701 19.94% 20% PASSED
CustStatus: 10408 10.03% 10% PASSED
ECPerf Requirement PASSED

RESPONSE TIMES AVG.MAX. 90TH% REQD. 90TH%
-------------- ---- ---- ----- -----------
NewOrder 0.612 6.232 1.300 2
ChgOrder 0.480 4.151 1.000 2
OrderStatus 0.180 2.518 0.500 2
CustStatus 0.518 5.950 1.400 2
ECPerf Requirement for 90% Response Time PASSED
ECPerf Requirement for Avg. Response Time PASSED

CYCLE TIMES TARGETED AVG. ACTUAL AVG. MIN. MAX.
----------- ------------- ----------- ---- ----
NewOrder 4.949 5.012 0.000 25.000 PASSED
ChgOrder 4.944 4.987 0.000 25.000 PASSED
OrderStatus 4.966 4.974 0.000 25.000 PASSED
CustStatus 4.969 5.034 0.000 25.000 PASSED

MISC. STATISTICS

Average items per order 28.658
Widget Ordering Rate 49562.433/min PASSED
Percent orders that are Large Orders 10.10 PASSED
Average items per Large order 150.110 PASSED
Largeorder Widget Ordering Rate 26229.233/min PASSED
Average items per Regular order 15.008 PASSED
Regular Widget Ordering Rate 23333.200/min PASSED
Percent orders submitted from Cart 50.08 PASSED
Percent ChgOrders that were delete 9.99 PASSED

LITTLE'S LAW VERIFICATION

Number of users = 290
Sum of Avg. RT * TPS for all Tx. Types = 288.448289

 15

5.3 Manufacturing Summary Report

Figure 4 – ECperf Manufacturing Summary Report

Mfg Summary Report
Version : ECperf 1.0 Update 1

Total Number of WorkOrders Processed : 76140
Number of WorkOrders as a result of LargeOrders : 14021
Total WorkOrders Production Rate : 2538.00 WorkOrders/min
LargeOrders Production Rate : 467.37 LargeOrders/min

Total Widget Manufacturing Rate : 46819.63 widgets/min
LargeOrderLine Widget Rate : 23525.87 widgets/min PASSED
PlannedLines Widget Rate : 23293.77 widgets/min PASSED

RESPONSE TIMES AVG. MAX. 90TH% REQD. 90TH%
-------------- ---- ---- ----- -----------

2.216 14.971 3.000 5
ECPerf Requirement for 90% Response Time Passed
ECPerf Requirement for Avg. Response Time Passed

6 Conclusions

ECperf is an excellent way to measure the performance and scalability of J2EE application servers.
It defines a real-world enterprise application benchmark of a J2EE application server. The
benchmark allows for a fair comparison of application servers. ECperf was not defined to favor any
particular product. It was defined by the Java Community Process.

ECperf is very explicit in the procedures for running and reporting benchmarks so that a given run of
a benchmark is repeatable by others. ECperf performance results for various application servers and
various system configurations are to be submitted to the ECperf Review Committee for review and
publication on their web site. When this happens, we will finally be able to fairly compare the
performance and scalability of different J2EE application server products.

7 References

1) ECperfTM Specification

Version 1.0, Final Release, Sun Microsystems, Inc, http://java.sun.com/j2ee/ecperf/

2) “Adopt ECperf for J2EE Application Server Benchmarking.” Giga Information Group.
Idea Byte, September 13, 2001. John Meyer.
“How does one get an “apples to apples” comparison when benchmarking J2EE application
servers? Answer: ECperf. Giga recommends that users adopt the ECperf 1.0 Specification and
Kit (which provides the necessary code to run the ECperf benchmark) as the foundation for all
application server benchmarking efforts....” Review this article at http://www.gigaweb.com/

3) TPC Benchmark Standard Specifications
 Transaction Processing Performance Council (TPC) http://www.tpc.org

 16

8 About The Authors

Salil Deshpande is President of The Middleware Company, a worldwide training & consulting
company focusing on enterprise software and middleware, and creators of theServerSide.com, the
world’s largest J2EE and Web Services community. In 1994 Salil founded CustomWare, a
consulting and system integration company that focused on CORBA technology, which was
acquired by Visigenic Software, which was later acquired by Borland. In 1998, Salil spun out the
old CustomWare group from Borland, to form a new company, The New CustomWare Company,
which continued to focus on enterprise software, but with a special emphasis on on Java 2 Enterprise
Edition (J2EE), Enterprise JavaBeans (EJB), and web services technologies. In 2002, in a move that
was praised by the J2EE community, CustomWare merged with The Middleware Company, and
thus became the obvious choice for J2EE and Web Services consulting, training, mentoring, skills
transfer, and and custom software development. Salil holds a B.S. in Electrical Engineering from
Cornell University, and an M.S. in Electrical Engineering / Computer Science (distributed operating
systems & programming languages) from Stanford University.

Bruce Martin is Senior Architect at The Middleware Company. Bruce has vast expertise in
building scalable multi-tier systems, Java, C++, CORBA, EJB and Java 2 Enterprise Edition (J2EE).
He has published numerous papers and spoken at numerous conferences. Bruce leads the Xbeans
open-source project that is building a collection of configurable JavaBeans to process XML in a
distributed data pipeline. Prior to CustomWare, Bruce held key positions at jGuru, Borland, Sun
Microsystems, and Hewlett-Packard Laboratories. Bruce is the principal author of five of the
OMG’s CORBAServices standards. Bruce received a Ph.D. in Computer Science from the
University of California, San Diego in 1988, an MS in Computer Science from University of
California, San Diego in 1984 and a BA in Computer Science from the University of California,
Berkeley in 1980.

Shanti Subramanyam is a member of the Performance and Availaibility Engineering (PAE) group
in Sun Microsystems. She is the Spec Lead for ECperf, a benchmark meant to measure J2EE server
performance. She has over ten years of experience in performance analysis and tuning of database
products. She has been involved with ECperf and EJB/J2EE performance for over 3 years.

