
 w w w.d ev e lop . c o m
1

java.security.Policy:
When “java.policy” Just Isn’t Good Enough
By Ted Neward

Abstract
Java 2's security system is a complex, pluggable architecture that allows for Java programmers to
participate in the default process, or to replace the java.policy-based implementation altogether in
favor of something else. In fact, Sun favors this latter approach, urging developers to implement a
customized Policy implementation more suitable to their business' needs.

In this paper, we will examine the details of how a new Policy implementation is built, and provide
readers with the knowledge necessary to “roll your own” Java Security Policy implementations.

This paper assumes you are familiar, at least in concept, with some of the Java2 Security architecture.

Problem Discussion
History
Bear with me through a slight history lesson about the Java Security mechanism. The Java Platform
has, from its very inception, been very sensitive to the idea of security. This is true both in the sense
of preventing malicious attacks along the lines of the infamous buffer-overrun attack so common in
CERN alerts1, as well as the idea of restricting access to sensitive operations to untrusted code.

This latter idea, first used in the applet architecture used by both the major browsers, came to be
known as the “applet sandbox”. It severely restricted applets’ abilities to either affect the machine
they were executing on, or to obtain sensitive information about that same machine. As applets
became more useful within developers’ lives, it became apparent that it was necessary to give
developers the ability to allow applets to “escape” the sandbox. Users are accustomed to executable
code manipulating things on the local machine, and couldn’t understand why an applet couldn’t do the
same. It was a natural expectation that an applet should be able to store user preferences, for

 w w w.d ev e lop . c o m
2

example, on the local disk. However, only code the user trusted should have such permissions—all
other applets needed to be kept within the sandbox.

Within the JDK 1.1 architecture, applets could be “signed” with a digital key that allowed the applet
(and only that applet) to escape the sandbox and have additional permissions, such as the ability to
write to the local disk or open socket connections to other hosts. This was known as the ability to have
“signed applets”, and both major browsers supported it2. The Java Runtime API has always had the
notion of security laced throughout the API, so supporting security within the API has been simple. Any
time the Java team decided the Runtime needed to provide a facility that was considered sensitive, it
required a check to the java.lang.SecurityManager:

SecurityManager sm = System.getSecurityManager();
if (sm != null)
sm.checkRead();

This sort of code is omnipresent within the Runtime API, and for the JDK 1.0 and 1.1 releases, served
Java well. If the current SecurityManager (if there is one) disallows the caller permission to, in the
above code, open a file, then a java.security.SecurityException is thrown and the call terminates. If
the caller has such permission, the call to checkRead silently completes and the rest of the method is
allowed to execute. Each sensitive operation requires its own checkXXX method, implemented on the
base SecurityManager class, and SecurityManager itself is abstract, requiring security implementors to
provide a concrete SecurityManager-extending class instance to provide security policy.

As Li Gong writes, however, “the need to support flexible and fine-grained access-control security
policies, with extensibility and scalability, called for a new and improved security architecture. The
result is JDK 1.2.”3 He goes on to describe the architecture of this new-and- improved security system:

“This new architecture uses a security policy to decide which individual access
permissions are granted to running code. These permissions are based on the code’s
characteristics, for example where the code is coming from, whether it is digitally
signed, and if so by whom. Later, attempts to access protected resources will invoke
security checks that will compare the granted permissions with the permissions
needed for the attempted access. If the former includes the latter, access will be
permitted; otherwise, access will be denied.”

--Inside the Java 2 Security Platform, p. 37

One of the key problems with the 1.1 architecture was that of extensibility—as long as SecurityManager
itself contained all the possible sensitive operations within its API, then all was well. However, the Sun
security team (led by Li Gong) realized that various systems may want to introduce customized security
checks, and doing so under a 1.1 architecture required one of two possible roads:

1. Brute-force the API and shoehorn permissions checks into existing API calls. For example,
an enterprise system might subvert the checkRead call into not only asking whether the
code has the ability to open a file, but also to open a connection to the database. The key
problem with this approach is that now each API call takes on dual meaning, and the code
is not inherently clear as to which meaning is being used (“Hey, Joe, is this call to
checkRead because I want to open a file, or because I want to display a dialog?” “How
should I know?”)

2. Introduce new API calls onto a custom SecurityManager-extending derived class, and
explicitly cast the call from System.getSecurityManager to the customized type before
attempting to check the new customized permission. Unfortunately, this carries with it a
serious question that could never be answered satisfactorily—what should the code do in
case the instance returned from System.getSecurityManager isn’t, in fact, the custom
SecurityManager expected? As strange as it might seem at first, it’s not uncommon for code
to be executing within an environment in which a strange SecurityManager already has

 w w w.d ev e lop . c o m
3

control: servlet engines, EJB servers, and other such container/component environments
(think Jini).

java.security.Policy
Sun’s solution was to make the SecurityManager class concrete, and no longer require security
implementors to create their own customized SecurityManager class. The SecurityManager now
delegates all calls to the checkPermission call, which expects an appropriate Permission object,
describing the permission sought by the caller. The security system compares the permission against
the permissions allowed by this CodeSource4, and if the code has appropriate permissions, the call is
allowed.

Effectively, what this does is separate two vitally important functions into two separate systems, both
of which were formerly intertwined inside of SecurityManager. One is the enforcement of a security
policy, which SecurityManager retains as its principal function in Java2. The other is the establishment
of that security policy in the first place. In JDK 1.1 VMs, the SecurityManager not only enforced policy,
via the various check calls, but through those calls, also implicitly established policy. To change the
policy required changing the SecurityManager-extending-class’ code.

“Under the Java2 system, the establishment of security policy is now handled by a new
class, the java.security.Policy class. To be more specific, it is now handled by a
derivative of the java.security.Policy class. The Singleton (see [3] for details) Policy
instance is called to establish the various Permissions allowed for a particular
CodeSource, and how this Policy instance establishes those permissions is entirely an
implementation detail. From the JDK 1.3 javadocs, This is an abstract class for
representing the system security policy for a Java application environment (specifying
which permissions are available for code from various sources). That is, the security
policy is represented by a Policy subclass providing an implementation of the abstract
methods in this Policy class.”

--jdk1.3/docs/api/java/security/Policy.html

In short, the Policy implementation (that is, an instance of a class that extends java.security.Policy) is
responsible for the establishment of PermissionCollection-to-CodeSource mappings5.

An abstract class is all well and good, but without a default implementation, it accomplishes exactly
nothing. As expected, the Sun JDK ships with a default Policy implementation, and it is this
implementation that is responsible for the java.policy file as we know (and love) it today.

sun.security.provider.PolicyFile
In lieu of another implementation, the Sun JVM uses the sun.security.provider.PolicyFile class as its
Policy instance. The PolicyFile implementation parses the java.policy file in the
${java.home}/lib/security directory6 and uses that to direct the association of Permissions to code. It is
possible to point the PolicyFile implementation to use some other file, or to use an amalgamation of
multiple files; in fact, by default two files will be consulted—the java.policy file mentioned above, as
well as a “.java.policy” (note the leading dot) file in the user’s home directory. This is controlled by
the “policy.url.n” entries in the “java.security” file, which lives in the same directory as the
java.policy file. The location of this file can also be controlled at the command-line, via the “-
Djava.security.policy=…” property parameter.

The format of this policy file is documented, both in the Java Security docs that come as part of the
standard JDK documentation bundle, as well as in [1] and [2]. Briefly put, the java.policy file consists
of one or more “grant” blocks, describing the permissions assigned to a particular CodeSource:

 w w w.d ev e lop . c o m
4

grant {
java.net.SocketPermission “localhost:1024-“, “listen”;
};
grant codeBase “file:/${user.home}” {
java.util.PropertyPermission “ user.name” “read, write”;
};
grant signedBy “fred_wesley” {
java.lang.RuntimePermission “ stopThread”;
};

At its simplest, the “grant” block can appear with no decorations, indicating that this block applies to
any and all code in the VM. A “grant” block associated with a URL applies these permissions to any and
all code coming from that URL. A “grant” block that has a “signedBy” attribute on it applies these
permissions to any code digitally signed under that name. In the example above, the first permission
set applies to all code, the second only to code loaded from the user’s home directory, and the third to
any code signed by “fred_wesley”.

Permission blocks are cumulative; if code signed by “fred_wesley” is loaded from the user’s home
directory (that is, the .jar file lives in the user’s home directory), then that code has all three sets of
permissions. That is, code signed by “fred_wesley” that comes out of my “user.home” directory has
permission to listen on ports 1024 and above (the java.net.SocketPermission permission), to look up
the value of the “user.home” system property (the java.util.PropertyPermission permission), and to
call Thread.stop() on Threads (the java.lang.RuntimePermission permission).

Criticisms of PolicyFile
As it stands, the PolicyFile implementation serves its role as “plain vanilla Policy implementation” well
enough for casual use. For use in client-side applications, it’s more than enough. However, the
PolicyFile implementation breaks down in a couple of places:

• Permissions can only be associated by CodeSource. The PolicyFile syntax doesn’t permit
any kind of role-based permissions; all permissions are assigned based on CodeSource. The
truth is, most Java “security” needs will be more along the lines of a role-based
permissions system (that is, each user has a role, and roles have certain permissions
available to them), than a code-based one. Unfortunately, even though the PolicyFile
syntax supports the “signedBy” attribute, that doesn’t really offer the same level of
control as a real role-based system.

• The policy file(s) are parsed once, then cached and never refreshed. Modifying the
java.policy file on disk doesn’t trigger a refresh() call on the Policy instance, which means
that the JVM itself won’t know about the modifications to the security policy until it is
restarted (or explicitly told to reload via an explicit Policy.getPolicy().refresh() call). While
suitable for JVMs that are frequently restarted, this has disastrous consequences for long-
running Java processes (like servlet engines and/or EJB servers).

• The policy file lives on disk, in plain-text format. An entire suite of disquieting thoughts
come along with this. The entire security policy is laid out in plain text, thus allowing
anyone with access to the filesystem to examine (and possibly modify) the security policy
at will. In addition, because few filesystems offer strong concurrent modification support,
it’s not clear exactly what will happen if I modify the policy file in the middle of JVM
startup.

All of this is not to say that the default implementation is not a strong or solid one. It simply doesn’t
serve the purposes to which we are putting Java these days: long-running server-side processes. In a
Five-Nines7 environment, bringing the EJB server down just to allow the new security policy to take
effect is not acceptable. In addition, leaving the security policy implementation available for any to

 w w w.d ev e lop . c o m
5

see is a downright security risk; ideally, it should at least be marginally encrypted somehow8. And a
centralized system for supporting role-based security is just too tempting to blow off.

Solution Discussion
Custom Policy implementations
The solution, of course, is to get your hands dirty and start writing your own Policy implementation.
In theory, creating a customized Policy implementation is a simple three-step process:

1. Extend java.security.Policy. This is pretty simple.

2. Override Policy.getPermissions(). This method will be called every time the security
architecture needs the PermissionCollection associated with a particular CodeSource. You
just have to write the code to hand back the right (by your own definition) set of
permissions.

3. Override Policy.refresh(). This method is available to clients to force the Policy
implementation to refresh its Permission settings. In your implementation, you should reset
whatever internal flags you keep in order to force re-analysis of the policy settings.

At its heart, this is all there is to it. In practice, however, it’s a bit trickier. This is due partly to the
fact that each and every Permissions object isn’t consulted every time a security check is made. In
point of fact, ultimately, the call to AccessController.checkPermission finds the ProtectionDomain for
each stack frame on the stack9 and calls the implies method on the ProtectionDomain. The
ProtectionDomain’s implies method in turn calls into its PermissionCollection’s implies method.

This is where things can get a bit tricky. Because certain PermissionCollection classes can (and do)
attempt to take shortcuts during the implies method, it’s not guaranteed that your Permission objects’
implies methods will be invoked. For example, consider the implies method from the
java.security.Permissions class:

public boolean implies(Permission permission) {
PermissionCollection pc = getPermissionCollection(permission);
if (allPermission != null && allPermission.implies(permission))
return true;
else
return pc.implies(permission);
}
private PermissionCollection getPermissionCollection(Permission
p) {
Class c = p.getClass();
PermissionCollection pc = (PermissionCollection) perms.get(c);
if (pc == null) {
synchronized (perms) {
// check again, in case someone else created one
// between the time we checked and the time we
// got the lock. We do this here to avoid
// making this whole method synchronized, because
// it is called by every public method.
pc = (PermissionCollection) perms.get(c);
//check for unresolved permissions
if (pc == null) {
pc = getUnresolvedPermissions(p);
// if still null, create a new collection
if (pc == null) {
pc = p.newPermissionCollection();

 w w w.d ev e lop . c o m
6

// still no PermissionCollection?
// We'll give them a PermissionsHash.
if (pc == null)
pc = new PermissionsHash();
}
}
perms.put(c, pc);
}
}
return pc;
}

In the Permissions class, each different type of Permission lives in its own PermissionCollection
instance. (The perms Hashtable is keyed off the Class object for the Permissions stored in the
PermissionCollection stored in the table.) This means that if you create a custom Permission class that
intends to represent a “composite” permission (like java.security.AllPermission does), then this
composite permission class is going to live in its own PermissionCollection instance. Then, when a
FilePermission is checked, only FilePermission-holding PermissionCollections will be asked, and the
PermissionCollection containing your composite permission is never consulted. This is why, if you look
at the source for the java.security.AllPermission class, it creates its own, custom, PermissionCollection
class from the newPermissionCollection method10.

In a way, this design conceptually sacrifices the intent of the system (Permissions determining access
control) on the altar of performance. In practical terms, though, it’s a fairly safe optimization—aside
from AllPermission, most Permission classes will be atomic permission concepts, and won’t need to
cross PermissionCollection boundaries. What this means to us as potential Policy implementors,
however, is that we’re going to need to be aware of this PermissionCollection implementation when we
start handing back PermissionCollection instnaces from the getPermissions method11.

Giving your Policy implementation control.
Just creating the Policy implementation class isn’t the end of it, however—you need some way for your
Policy implementation instance to replace the Singleton PolicyFile instance, as well. Java2 provides
two ways in which your Policy instance can “take over” for the default Policy instance: at JVM startup
time, and via a call to the static Policy.setPolicy method.

Of the two, the easier approach is to use the static Policy.setPolicy method. This is a secure operation
(which means that if the current Policy doesn’t allow for it—it’s a SecurityPermission(“setPolicy”)
check) that replaces the current Singleton Policy instance with the one passed in. From that point
forward, any calls to Policy.getPolicy will return your Policy instance and not the default Sun PolicyFile
instance.

The drawback to using the setPolicy approach is that it requires user code to execute it— but Policy
decisions need to be made long before the VM can get to the point of calling that user code. This
means that, at startup, the VM will use the default PolicyFile instance, and use the “java.policy” file(s)
for policy decisions, at least until your Policy.setPolicy executes. This means that not all policy
decisions are being made by your Policy instance, and that policy decisions are now decentralized
between two places: your implementation, and the default implementation.

In order to centralize all policy decisions within the hands of our Policy instance, we need to get our
Policy implementation hooked up from the very start of the VM. Fortunately, the Sun Java2
architecture provides for this, via the “java.security” file.

According to the Sun documentation, the only step required to become the from-startup Policy
implementation is to change a single line in the “java.security” properties file. Changing
“policy.provider=sun.security.provider.PolicyFile” to a value matching that of your own Policy

 w w w.d ev e lop . c o m
7

implementation (for example, “com.javageeks.security.MyPolicy”, which is listed below) does the
trick. At least, it would appear to do so.

What Sun fails to document is that if the Policy implementation is to be successfully loaded, it must be
available to the bootstrap ClassLoader for loading12. [5] describes ways in which to work with the
bootstrap ClassLoader, but for now, simply create a “classes” directory under the “jre” directory and
place the Policy implementation there. Now the bootstrap ClassLoader will pick up the MyPolicy
implementation, and all is well—MyPolicy will be consulted for PermissionCollections, not the standard
Sun PolicyFile implementation.

Remember, the Java Security model has now entered a new dimension when you do this—no longer will
the “java.policy” file have any effect on the security policy in effect for this VM. That decision will be
entirely up to your Policy implementation, and your Policy alone13.

A first Policy implementation: MyPolicy.
Take a look at the following code, a simple(?) implementation of a Policy-extending class:

package com.javageeks.security;
import java.security.*;
import java.util.*;
/**
*
*/
class MyPermission extends BasicPermission
{
static boolean allow;
public MyPermission()
{
super("<>");
}
public boolean implies(Permission p)
{
System.out.println("<<" + getClass() + ".implies(" + p +
") called>>");
// Special-case permissions always on
//
if (p instanceof SecurityPermission)
{
return true;
}
return allow;
}
}
/**
*
*/
class MyPermissionCollection extends PermissionCollection
{
ArrayList perms = new ArrayList();
public void add(Permission p)
{
perms.add(p);
}
public boolean implies(Permission p)
{
System.out.println("<

 w w w.d ev e lop . c o m
8

To see how it works, let’s also take a look at a simple test
driver to exercise the Policy and
see if it all works:

import java.io.*;
public class Driver
{
/**
* Test driver
*/
public static void main (String args[])
throws Exception
{
try
{
// Now try to do something
//
FileInputStream fis = new FileInputStream("test.file");
int ch;
while ((ch = fis.read()) != -1)
{
System.out.write(ch);
}
System.out.println("");
}
catch (SecurityException secEx)
{
secEx.printStackTrace();
}
// Force a refresh, which for our policy causes everything
// to be allowed from now on.
//
java.security.Policy.getPolicy().refresh();
try
{
// Now try to do something
//
FileInputStream fis = new FileInputStream("test.file");.11
int ch;
while ((ch = fis.read()) != -1)
{
System.out.write(ch);
}
System.out.println("");
}
catch (SecurityException secEx)
{
secEx.printStackTrace();
}
}
}

The Driver code is a simple two-step process: attempt to open a file (which, inside the FileInputStream
constructor, generates a call to SecurityManager.checkRead, which in turn means a checkPermission
call with a java.io.FilePermission object), then call refresh on the Policy instance (which, in the case
of the MyPolicy policy, flips the “allow” static from false to true) and try again. Running the code looks
like this:

 w w w.d ev e lop . c o m
9

C:\ >run Driver
C:\ >jre\bin\java -classpath classes -Djava.security.manager
Driver
<>
<>
<>
<>
java.security.AccessControlException: access denied (
java.io.FilePermission test.file
read)
at
java.security.AccessControlContext.checkPermission(AccessControlC
ontext.java:272)
at
java.security.AccessController.checkPermission(AccessController.j
ava:399)
at
java.lang.SecurityManager.checkPermission(SecurityManager.java:54
5)
at java.lang.SecurityManager.checkRead(SecurityManager.java:890)
at java.io.FileInputStream.(FileInputStream.java:61)
at Driver.main(Driver.java:15)
<>
<>
<>
<>
<>
This is a test
C:\ >

(Note that, as usual, the “-Djava.security.manager” property must be set in order for the calls to
SecurityManager.checkRead to take place; creating your own Policy implementation doesn't change
this.) Looking at the output, we can see the MyPolicy class is loaded, then an instance is constructed.
When the Driver class is first loaded, MyPolicy’s getPermissions is called for the CodeSource
representing the local directory (in this case, “C:/Projects/Papers/JavaPolicy/code/classes/”) with no
certificates. MyPolicy responds by returning its internal instance of MyPermissionCollection, which
contains one MyPermission object. That MyPermission object, when its implies method is invoked,
returns either true or false, based on the value of the static allow field. When MyPolicy’s refresh
method is invoked, it changes the value of the MyPermission.allow field to true, thereby allowing calls
to go through. As we can see, from the output, after the call to refresh, the second attempt by the
Driver class to open the test.file file is successful.

A couple of implementation notes must be highlighted here. To begin, this implementation makes use
of a customized PermissionCollection class (MyPermissionCollection) as well as a custom Permission
class (MyPermission) for simplicity’s sake. A production-quality system would use the standard
Permission classes (java.io.FilePermission, java.net.SocketPermission, and so on) and, most likely, the
java.security.Permissions class to store them14. Secondly, a refresh call normally would force a
complete reparse/reload/re-whatever of the security policy, rather than affect the current policy in
force.

A second Policy implementation: PolicyRoleFile
The MyPolicy implementationabove doesn’t really do anything exciting—all-or-nothing kinds of
permissions aren’tparticularly useful in a real-world scenario, and simply writing diagnostic material to
the console doesn’t typically get users or customers very excited. Instead, let’s create a (simplified)
real-world Policy implementation for solving a common problem: application role-based security
permissions.

 w w w.d ev e lop . c o m
10

Within many systems, it’s common to have different types of users. Most commonly, users when
grouped fall into one of three categories: “user”, “administrator”, and “guest”. The “user” group is
the most common scenario—these are the users for whom the application was originally intended. The
“administrator” group is those users responsible for the smooth operation of the system. The “guest”
group is those users who have no ability to do anything but tour the system and “visit” for a while,
without being able to damage it in any way15.

Each of these different groups needs to have a unique security policy attached to them: admins need
the ability to arbitrarily change data, regardless of business rules16. This is not an operation we
normally want to grant to “average users”, and certainly not to guests within the system. One way to
provide this kind of capability is to simply hand passwords to the database to the admins, and to have a
separate database for “guests” to play around in. This approach works, although it lacks a certain
elegance. What’s more, it lacks the ability to restrict the admins, as well—we don’t always want the
admins to have complete control over the entire database, which giving them the passwords does.
Ideally, we’d really prefer to have a fine-grained approach to security within the system.

Fortunately, Java Security offers another way without requiring a ton of coding on the programmers’
parts. We can create a custom Policy implementation that takes roles into account when allowing or
disallowing certain operations to take place; what’s more, we can hook it into the normal Java Policy
mechanism without too much trouble.

There are a couple of ways to accomplish this within the Java2 Security architecture. One approach
would be to create a series of username-driven Permission classes, which returned true or false based
on whatever the current user.name value was:

/**
* (Fictional example; no code for this exists in the sample code)
*/
public class DatabasePermission extends Permission
{
public DatabasePermission(String action, String target)
{ . . . }
public boolean implies(Permission p)
{
if (p instanceof DatabasePermission)
{
String username = UserManager.getUsername();
String role = UserManager.getRole(username);
if (role.equals(“user”) || role.equals(“admin”))
return true;
}
return false;
}
}

where UserManager is a static class17 used to retrieve the current user’s username and the role to
which they belong (user, admin, guest, and so on).

This approach carries a couple of drawbacks. For starters, this example hardcodes all of the possible
roles into the Permissions class, making it awkward and difficult to add a new role or remove one.
Secondly, the Permissions classes are now doing some of the same work the SecurityManager and/or
AccessController classes are supposed to be doing—enforcing policy, not simply deciding it. Lastly, this
approach works only as long as no “standard” Permissions, like java.io.FilePermission or
java.net.SocketPermission, are considered. Because we can’t change the Java Runtime API18, we can’t
arbitrarily modify the FilePermission or SocketPermission or any other Runtime API Permission classes.
In the ideal, we’d like to have different permission sets active (incuding both custom and standard

 w w w.d ev e lop . c o m
11

Permission types), based on the username19. We can accomplish this by creating a custom Policy
implementation to:

1. Obtain the current user’s username and/or role. This could be as simple as popping up a
dialog box, or as complex as obtaining the current OS-specific value (such as looking up the
value of an OS-specific environment variable).

2. Look up the permissions allowed for this given user. One such approach would be to
continue the format of the “java.policy” mechanism, so that a given java.policy file could
look something like the following:

grant user “Fred” {
permission java.io.FilePermission “/usr/fred” “read, write”;
};
grant user “Don” {
permission java.security.AllPermission;
};

(This particular syntax isn’t the most ideal, nor does it solve any of the problems described
in the earlier criticism of the PolicyFile syntax except one: user-based security
permissions20.)

3. Once the Permission set for this user is obtained, then return a PermissionCollection
instance (most likely a java.security.Permissions instance) that contains the new
Permissions for the specific user.

One of the key advantages this particular idea has is that the usual PolicyFile implementation would
remain intact, so that java.policy files of the form:

grant codebase “file:${java.home}/lib/ext/*” {
permission java.security.AllPermission;
};
grant signedBy “duke” codebase “http://www.javasoft.com/*” {
permission java.security.AllPermission;
};
grant user “fred_wesley” {
permission java.security.AllPermission;
};

would still be possible. (This particular policy file would grant AllPermission to code loaded from the
Extensions directory, to code signed by “duke” that was downloaded from the Sun website, and to
code executed by the user “fred_wesley”.)

Other Policy implementation ideas.
Other possible ideas for Policy implementations include, but certainly aren’t limited to:

• An XML-based version of PolicyFile. This one is actually rather simple to contemplate—
instead of using Sun’s PolicyFile syntax to describe the security policy, use XML (and an XML
Parser to parse it) instead. This approach doesn’t necessarily solve any of the problems
listed earlier with the standard PolicyFile implementation (that is, it’s still text, it’s on the
filesystem, and so on), but it does allow us to tie a neat buzzword into the topic.

• An RDBMS Policy. Storing policy within an RDBMS offers several advantages, including
security—RDBMS vendors spend a lot more time thinking about ways to prevent
unauthorized intruders from accessing the data than most programmers do, so why not
make use of that? In addition, by structuring the SQL correctly, role-based policies can be
established by looking up the user’s role (where the username is obtained either from the

 w w w.d ev e lop . c o m
12

command-line or environment variable, perhaps) and finding the associated permissions
from there.

• An encrypted version of PolicyFile. Take the standard PolicyFile implementation (or the
XMLPolicyFile version discussed above) and run it through a standard decrypt when parsing
the policy file. This way, though the policy file exists on disk, it remains opaque to
unauthorized viewers.

It’s also reasonable to consider implementations that combine one or more of the ideas described
above. The fact is, writing a custom Policy implementation is not an impossible task, nor one that
needs to be viewed with trepidation.

Consequences
As with any aspect of this industry, each decision made carries with it risks and consequences that have
to be weighed carefully. Creating custom Policy implementations is certainly no exception:

• Java2 Security learning curve. It’s not feasible to create a custom Policy implementation
without a good understanding of CodeSources, Permissions, ProtectionDomains, and
ClassLoaders. If any of these subjects remain unfamiliar, then trying to create a custom
Policy implementation will make zero sense whatsoever. Fortunately, there are a number
of good resources available (see the Bibliography) to help understand the subject better.

• Security risks. I freely admit that I’m not a “security expert”, not in the traditional sense
of the term. This means that any custom Policy implementation I write could potentially
have security holes within it I haven’t considered, and could be vulnerable to attack. This
carries its own advantage, too—if it’s a custom Policy implementation, attacks on the
standard Policy implementation won’t work, either.

• Difficulty of debugging and/or diagnosing. During development of the Policy
implementation class, it can be extraordinarily tricky to debug and/or diagnose problems.
Trying to run under a standard debugger can be difficult, if only because most Java
debuggers assume that debugging will begin after JVM startup, and will not allow
breakpoints to be set inside your Policy implementation. For the most part, the best
debug/diagnostic tool is “good ol’ System.out.println()”.

• Potential decentralized policy management. If you make use of the Policy.setPolicy()
approach to set up your security policy implementation, then your security policy is spread
out across two locations: the java.policy file, and wherever your policy is specified
(database, XML file, whatever). This means two places system administrators must go in
order to modify the security policy, and that means twice as many opportunities for things
“to just go wrong”.

The consequences would seem to be an impassable obstacle standing between a would-be Policy
implementor and success. The truth of the matter, as always, is a murkier thing; although not
impossible, creating your own Policy class is not something to be attempted trivially or “just because it
looks cool on a resume”. Working within the standard Java Policy mechanism (that is, the java.policy-
file-based approach) is itself a very flexible system and can yield some powerful results. Only consider
creating your own Policy implementation when the java.policy file fails you for some reason (some of
which were discussed earlier).

Summary
In this paper, the means by which a new Policy implementation is created was explored. To do that, it
was necessary to understand (briefly) how the Policy is consulted for the set of permissions granted to
a particular CodeSource, and how these Permissions are considered by the VM when attempting
security checks within the heart of the permissions system.

 w w w.d ev e lop . c o m
13

The blunt truth of the matter is a common refrain: “With power, comes complexity”. Creating your
own Policy implementation gives a Java coder an incredible amount of control over the VM and the
security policy it obeys; the tradeoff, as can be seen, is a much more complicated JRE arrangement.

Glossary 21
CodeSource
(java.security.CodeSource): A class representing the origination point of code executing within the VM.
From the javadocs, “This class extends the concept of a [applet’s] codebase to encapsulate not only
the location (URL) but also the certificate(s) that were used to verify signed code originating from that
location.” Effectively, as its name implies, this class wraps around the source of some code, be it .jar
file, http URL, or some other location describing the code’s location. If any certificates are present
from the code’s source, those certificates are present in the CodeSource object representing that
code. CodeSources will be unique, one for each location/URL.

Mallory:
Name referring to a fictitious individual bent on performing malicious actions within the system. From
[4].

Permission
(java.security.Permission): A class encapsulating a request for a sensitive operation. From the
javadocs, “Abstract class for representing access to a system resource. All permissions have a name
(whose interpretation depends on the subclass), as well as abstract functions for defining the semantics
of the particular Permission subclass.” Each Permission-extending class represents the control of a
sensitive operation, such as the opening of a socket (java.net.SocketPermission), opening access to a
file for either read or write (java.io.FilePermission), and so on. The Permission-extending class itself is
responsible for the implementation of the implies(), equals(), getActions(), and hashCode() methods.

PermissionCollection
(java.security.PermissionCollection): A class encapsulating a collection of Permission objects (which is
almost word-for-word what the javadocs say). In essence, this class is a shorthand way to check a group
of Permissions without having to call the implies method on each individual Permission object
(assuming the PermissionCollection object implements its own implies method that way). The Sun JDK
ships with one PermissionCollection-extending classes, java.security.Permissions, and several other
Permission classes (such as java.security.AllPermission) have their own anonymous
PermissionCollection-extending classes.

Policy
(java.security.Policy): The class responsible for representing the security policy for this particular VM
in Java. From the javadocs, “This is an abstract class for representing the system security policy for a
Java application environment (specifying which permissions are available for code from various
sources). That is, the security policy is represented by a Policy subclass providing an implementation of
the abstract methods in this Policy class.” In practical terms, the Policy class is responsible for
establishing the PermissionCollections for each CodeSource given to it, via the getPermissions method.
ProtectionDomain (java.security.ProtectionDomain): From the javadocs,

This ProtectionDomain class encapulates the characteristics of a domain, which
encloses a set of classes whose instances are granted the same set of permissions.

In addition to a set of permissions, a domain is comprised of a CodeSource, which is a
set of PublicKeys together with a codebase (in the form of a URL). Thus, classes signed
by the same keys and from the same URL are placed in the same domain. Classes that
have the same permissions but are from different code sources belong to different
domains. A class belongs to one and only one ProtectionDomain.

 w w w.d ev e lop . c o m
14

A ProtectionDomain, simply put, is a { CodeSource, Permissions } tuple. ProtectionDomains will
usually, but not always, correspond on a one-to-one basis with the “grant” entries in a java.policy file.

Bibliography

[1] Inside Java 2 Platform Security: Architecture, API Design, and Implementation, by Li Gong. Addison-
Wesley, 1999.

[2] Inside the Java2 Virtual Machine, by Bill Venners. IDG Books, 2000.

[3] Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Addison-
Wesley, 1995.

[4] Applied Cryptography, 2nd Ed., by Bruce Schneier. John Wiley & Sons, 1996.

[5] “Using the BootClasspath”, available at http://www.javageeks.com

Endnotes
1. As cited in [1], footnote 2, “A recent study concluded that about 50 percent of all CERT-issued

alerts are due in part to buffer-overflow errors”. (p. 22)

2. Naturally, however, each one did it in a different manner.

3. From [1], p. 37

4. See the Glossary for a quick summary of CodeSource, Permission, ProtectionDomain and Policy
classes, or see [1] or the Java Security documentation in the JDK 1.2/1.3 documentation bundle for
in-depth details.

5. To be quite specific about it, it’s actually SecureClassLoader (from java.security), the parent to
URLClassLoader, that establishes the permissions for a particular class, at load-time.
SecureClassLoader, in its defineClass method, obtains a PermissionCollection instance by calling
the Policy instance’s getPermissions method. It then takes the returned PermissionCollection
instance and creates a ProtectionDomain instance around it (and the CodeSource). This
ProtectionDomain instance is later what will be used to find the permissions associated with the
code when the AccessController.checkPermission method is called.

6. On my Win98 system, for example, this translates to “C:\jdk1.3\jre\lib\security\java.policy”.

7. For those unfamiliar with the term, “Five-Nines” refers to the goal of having the production servers
available 99.999% of the year. Over 365.25 days, that translates roughly into five minutes of down
time, scheduled or not, per year. That doesn’t leave a lot of room for mistakes.

8. Certainly, it could be argued that if Mallory (see [4]) has access to the filesystem, modifications to
the java.policy file are the least of your concerns. That only holds so long as the “keys to the
kingdom” lie in environments that aren’t driven by Java—as more and more Java-based systems
assume key roles within the enterprise, this assumption becomes less and less stable.

9. Walking you through the code from the start of the checkPermission call to this point introduces a
lot more complexity than is really necessary; you can either walk it through yourself using the
source or your favorite Java debugger, or else just take my word for it.

10. If you examine the implementation of the Permissions class in more detail, you’ll also see that the
Permissions class has an optimization explicitly designed to take care of the AllPermission scenario.

11. This one bit me, personally, when trying to come up with the MyPolicy example implementation
you’ll see in a bit. Being aware of it makes all the difference.

 w w w.d ev e lop . c o m
15

12. At first, it would seem like this is an obvious bug on Sun’s part. Thinking about it for a second,
however, yields some interesting insights about mucking around with non-standard
implementations in Java. The AppClassLoader (the ClassLoader responsible for loading code from
the CLASSPATH) isn’t available to load code at the time the Policy implementation is first needed
(that is, the first time a SecureClassLoader-extending class instance looks to the Policy for a
PermissionCollection). Therefore, relying on the AppClassLoader (or the ExtClassLoader, for that
matter) is unacceptable—and the only other ClassLoader available is the bootstrap loader. (In all
honesty, this is why the MyPolicy implementation I describe below has a static initializer block to
print out a message when the class gets loaded—I spent two days trying to figure out why MyPolicy
wasn’t being used.)

13. It’s always possible, of course, to create an instance of the sun.security.provider.PolicyFile class
and use it from within your own Policy class (a la Decorator—see [3]), but the fact remains that the
ultimate decision still rests in the hands of your Policy instance.

14. Again, it’s only when you need to support composite Permission classes (like
java.security.AllPermission) that customized PermissionCollection classes need to come into play.

15. By entering bogus data, for example. “guest” roles are typically reserved for demos of an online
system, or for product demos, and so on.

16. Usually, they need this ability because there are still a few leftover bugs in the system. It’s not
uncommon for that privilege to be needed for other purposes, but by far, the number one need for
this capability is to find “lost” data, correct mistyped data, and so on, many (if not most) of which
arise from programmer bugs.

17. That is, a class with all methods declared static; in effect, a Singleton.

18. OK, we could change it, if we really wanted to (see [5] for details), but it’s definitely not high on
my list of recommended solutions to the problem.

19. Actually, usually it will be based on the user’s given role (usually “guest”, “admin”, or “user”,
most likely).

20. In all likelihood, you’ll grant Permissions to “roles”, and then describe users and being one (or
more) roles, but this syntax serves to demonstrate the concept, which is all I’m looking to do here.

21. The classes described in this section are described in much more glowing detail in [1] and, to a
lesser degree, in [2] and the javadoc documentation.

Copyright
This paper, and accompanying source code, is copyright © 2001 by Ted Neward. All rights reserved. Usage for any
other purpose than personal or non-commercial education is expressly prohibited without written consent. Code is
copy written under the Lesser GNU Public License (LGPL). For questions or concerns, contact author.

Last modified on September 28, 2000.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

DevelopMentor is independent of Sun Microsystems, Inc.
 2001 DevelopMentor, Inc. DevelopMentor is a registered trademark of DevelopMentor, Inc.

