

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-93-6

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

brief contents

PART 1 UNDERSTANDING AOP AND ASPECTJ.............................1

1 ■ Introduction to AOP 3

2 ■ Introducing AspectJ 32

3 ■ AspectJ: syntax basics 64

4 ■ Advanced AspectJ 100

PART 2 BASIC APPLICATIONS OF ASPECTJ................................143

5 ■ Monitoring techniques: logging, tracing,
and profiling 145

6 ■ Policy enforcement: system wide contracts 178

7 ■ Optimization: pooling and caching 202

PART 3 ADVANCED APPLICATIONS OF ASPECTJ......................243

8 ■ Design patterns and idioms 245

9 ■ Implementing thread safety 286

10 ■ Authentication and authorization 323
vii

viii BRIEF CONTENTS
11 ■ Transaction management 356

12 ■ Implementing business rules 391

13 ■ The next step 425

A ■ The AspectJ compiler 438

B ■ Understanding Ant integration 447

■ resources 455

■ index 461

10Authentication and
authorization
This chapter covers
■ Using JAAS to implement authentication and

authorization
■ Using AspectJ to modularize JAAS-based

authentication
■ Using AspectJ to modularize JAAS-based

authorization
323

324 CHAPTER 10
Authentication and authorization
An important consideration for modern software systems, security consists of many
components, including authentication, authorization, auditing, protection against
web site attacks, and cryptography. In this chapter, we focus on two of these:
authentication and authorization. Together these security components manage
system access by evaluating users’ identities and credentials.

 This chapter introduces an AspectJ-based solution using the Java Authentica-
tion and Authorization Service (JAAS), one of the newest ways to implement
authentication and authorization in Java applications. You’ll see how AspectJ-
based solutions work in cooperation—and not in competition—with existing
technologies. Using AspectJ helps you to modularize your implementation,
which leads to better response to requirement changes, while at the same time
greatly reducing the amount of code you have to write.

 To get a clear understanding of the core problem and how you’d use JAAS to
address it, we also examine the conventional solution for implementing authen-
tication and authorization. Developing the conventional solution serves two pur-
poses: it introduces the basic mechanism offered by JAAS and it demonstrates its
shortcomings. Later when we present the AspectJ-based solution, this knowledge
will come in handy.

10.1 Problem overview

Authentication is a process that verifies that you are who you say you are. Authoriza-
tion, on the other hand, is a process that establishes whether an authenticated
user has sufficient permissions to access certain resources. Both components are
so closely related that it is difficult to talk about one without the other—authori-
zation cannot be accomplished without first performing authentication, and
authentication alone is rarely sufficient to determine access to resources.

 Since authentication and authorization are so important—and continue to
become even more so given our highly connected world—we must learn to deal
with the various ways of implementing such control. Modern APIs like JAAS (which
is now a standard part of J2SE 1.4) abstract the underlying mechanisms and allow
you to separate the access control configuration from the code. The application-
level developer doesn’t have to be aware of the underlying mechanism and won’t
need to make any invasive changes when it changes. In parallel to these APIs,
efforts such as the Security Assertion Markup Language (SAML) and the Extensi-
ble Access Control Markup Language (XACML) aim to standardize the configura-
tion specification language. The overall goal of these APIs and standardization
efforts is to reduce complexity and provide agile implementations.

A simple banking example 325
 Conventional programming methods, even when using APIs such as JAAS,
require you to modify multiple modules individually to equip them with authen-
tication and authorization code. For instance, to implement access control in a
banking system, you must add calls to JAAS methods to all the business methods.
As the business logic is spread over multiple modules, so too is the implementa-
tion of the access control logic.

 Unlike the bare OOP solution, an EJB framework handles authorization in a
much more modular way, separating the security attributes in the deployment
descriptor. As we mentioned in chapter 1, the very existence of EJB is proof that
we need to modularize such concerns. When EJB or a similar framework is not a
choice, as in a UI program, the solution often lacks the desired modularization.
With AspectJ, you now have a much better solution for all such situations.

NOTE Even with the EJB framework, you may face situations that need a cus-
tom solution for authentication and authorization. Consider, for exam-
ple, data-driven authorization where the authorization check not only
considers the identity of the user and the functionality being accessed,
but also the data involved. Current EJB frameworks do not offer a good
solution to these problems that demand flexibility.

10.2 A simple banking example

To illustrate the problem and provide a test bed, let’s write a simple banking sys-
tem. We’ll examine only the parts of the system that illustrate issues involved in
conventional and AspectJ-based solutions to authentication and authorization
implementation. The banking example here differs from the one in chapter 2 in
a few ways: We refactor the classes to create interfaces, we put all the classes and
interfaces in the banking package, and we introduce a new class. We will continue
to build on this system in the next two chapters.

 Listing 10.1 shows the Account interface. (As you can see, we have omitted
some of the methods that you would expect to see in an Account interface.) Later
we’ll create a simple implementation of this interface. The exception Insufficient-
BalanceException that we’ll use to identify an insufficient balance is implemented
in listing 10.2.

package banking;

public interface Account {
 public int getAccountNumber();

Listing 10.1 Account.java

326 CHAPTER 10
Authentication and authorization
 public void credit(float amount);

 public void debit(float amount)
 throws InsufficientBalanceException;

 public float getBalance();
}

package banking;

public class InsufficientBalanceException extends Exception {
 public InsufficientBalanceException(String message) {
 super(message);
 }
}

Now, let’s look at a simple, bare-bones implementation of the Account interface.
Later, we’ll pose the problem of authorizing all of its methods, using both conven-
tional and AspectJ-based solutions. Listing 10.3 shows a simple implementation of
the Account interface that models a banking account.

package banking;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 return _accountNumber;
 }

 public void credit(float amount) {
 _balance = _balance + amount;
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 if (_balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");

Listing 10.2 InsufficientBalanceException.java

Listing 10.3 AccountSimpleImpl.java

A simple banking example 327
 } else {
 _balance = _balance - amount;
 }
 }

 public float getBalance() {
 return _balance;
 }
}

The code for AccountSimpleImpl is straightforward. To examine how our solution
works across multiple modules and with nested methods that need authorization,
let’s introduce another class, InterAccountTransferSystem (listing 10.4), which
simply contains one method for transferring funds from one account to another.

package banking;

public class InterAccountTransferSystem {
 public static void transfer(Account from, Account to,
 float amount)
 throws InsufficientBalanceException {
 to.credit(amount);
 from.debit(amount);
 }
}

Finally, to test our solution we’ll write a simple Test class. In the sections that fol-
low, we will use this class as a basis for adding authentication and authorization
in the conventional way; later in the chapter, we will use the class to test the
AspectJ-based solution. Listing 10.5 shows the implementation of the Test class.

package banking;

public class Test {
 public static void main(String[] args) throws Exception {
 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

Listing 10.4 InterAccountTransferSystem.java

Listing 10.5 Test.java: version with no authentication or authorization

328 CHAPTER 10
Authentication and authorization
 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

Because of the way the operations are arranged, the last operation should throw
an InsufficientBalanceException. We will ensure that our solutions satisfy the
requirement of throwing this exception (as opposed to some other type of excep-
tion or no exception at all) when the business logic detects insufficient funds in
the debiting account.

 Next, let’s implement a basic logging aspect (listing 10.6) to help us under-
stand the activities taking place.

package banking;

import org.aspectj.lang.*;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut loggedOperations()
 : accountActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The base aspect, IndentedLogging, was discussed in section 5.5.2. It provides the
support for indenting the log statements according to their call depth. We need
to define the loggedOperation() pointcut that was declared in the base Indented-
Logging aspect. Later, we will add authentication and authorization logging to it
as we develop the solution. We won’t log more details about the activities (such as
account number and amount involved), since the correctness of the core imple-
mentation is not the focus of this chapter.

Listing 10.6 AuthLogging.java: logging banking operations

Authentication: the conventional way 329
 When we compile the basic banking application and the logging aspect, and
then run the test program, we see output similar to this:

> ajc banking*.java logging*.java
> java banking.Test
<credit>
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
...more call stack

The output shows the interaction when no authentication or authorization is in
place. This interaction log will serve as the basis for comparison when we add
authentication and authorization.

 Coverage of the JAAS mechanism is brief since our purpose is to demonstrate
the AOP solution. We encourage you to read a good JAAS book or tutorial so that
you will understand the more complex issues that we do not deal with here; then
you can extend the AspectJ-based solution to them as well. Please note that
although we use a JAAS-based example to explain the AspectJ-based solution, you
can also use the solution as a template for other kinds of access control systems.

10.3 Authentication: the conventional way

In this section, we add authentication functionality to our basic banking system.
We employ the upfront login approach—asking for the username and password at
the beginning of the program. Because of its complexity, we won’t look at an
example of just-in-time authentication (in which authentication does not occur
until the user accesses the system functionality that requires user identity verifica-
tion) in this section, since the point we are demonstrating is basically the same.

10.3.1 Implementing the solution

The authentication functionality in JAAS consists of the following:
■ A LoginContext object
■ Callback handlers that present the login challenge to the user
■ A login configuration file that enables you to modify the configuration

without changing the source code

➥

330 CHAPTER 10
Authentication and authorization
The callback handler provides a mechanism for acquiring authentication infor-
mation. It asks users to provide their name and password either on the console,
in a login dialog box, or through some other means. In our case, we use a simple
TextCallbackHandler that is part of Sun’s JRE 1.4 distribution. If you are using
another JRE, this class may not be available, and you will have to either find an
equivalent or write one of your own. TextCallbackHandler, when invoked, simply
asks for the username and password and supplies the information to the authen-
tication system invoking it. Since the username and password are visible to the
user, you are unlikely to use this callback handler in a real system, but it serves as
a simple, illustrative mechanism for our purposes.

NOTE We use the term user to mean anyone and anything accessing the sys-
tem. It includes human as well as nonhuman users—people and other
parts of the system. For example, in a business-to-business transac-
tion, a machine is likely to represent the identity of a business access-
ing the service.

The login configuration file sets up the class that is used as the authentication
module. We use a very simple authentication module, sample.module.SampleLogin-
Module, provided as a part of the JAAS tutorial (see http://java.sun.com/j2se/1.4/
docs/guide/security/jaas/tutorials/GeneralAcnAndAzn.html). The classes from the
sample package we use are described in the tutorial. Employing this simple
scheme allows us to focus on using AOP instead of the details of JAAS. The fol-
lowing login configuration file (sample_jaas.config) associates the Sample config-
uration with the sample.module.SampleLoginModule class:

Sample {
 sample.module.SampleLoginModule required debug=true;
};

The LoginContext object needs two parameters: a configuration name and a call-
back handler. The configuration name (Sample), in conjunction with the configu-
ration file, determines the login module used by the system.

 Let’s change the Test class to implement authentication with JAAS in the con-
ventional way, as shown in listing 10.7.

package banking;

import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

Listing 10.7 Test.java: with authentication functionality

Authentication: the conventional way 331
public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

We enable authentication in our banking system by performing login before
executing any core code. First, we create a LoginContext object, supplying it
with the name of the configuration we wish to use and the callback handler
that will request the username and password. Next, we invoke the login()
method on the LoginContext object. If the username and password pass the
authentication test, the method simply returns normally. If, however, the user-
name and password fail to match, it throws a checked exception of type Login-
Exception. Once the authentication is passed successfully, we continue with the
main program functionality.

 Since we have chosen to implement upfront login authentication, this
arrangement will satisfy that requirement. If, however, you want just-in-time
authentication, you will need to add similar authentication coding in every such
operation. Just-in-time authentication is useful when the system contains several
parts that do not require authenticating the user. Pre-authenticating users may
be less than desirable in such cases.

10.3.2 Testing the solution

To examine the interaction, let’s improve the logging aspect for capturing the
authentication join points. We will change the pointcuts to log the login join
points, as shown in listing 10.8. In the section that follows, we will use the same
logging aspect when we test our AspectJ-based solution.

332 CHAPTER 10
Authentication and authorization
package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

When we run the program, it asks for a username and password. If the user can
be authenticated, it proceeds with the remaining part of the program. Other-
wise, it throws a LoginException:

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<credit>
<debit>
<transfer>

Listing 10.8 AuthLogging.java: with authentication logging implemented

➥

➥

Authentication: the AspectJ way 333
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

With the exception of presenting the user with a login challenge, there is no dif-
ference in interaction compared with the base system. We now have a banking
system that allows access only to authenticated users.

10.4 Authentication: the AspectJ way

At this point, you should have a good understanding of how to use JAAS for
authentication. However, you’ll recall that when we used it in the conventional
solution, we were forced to make changes to the core system in order to add the
authentication. Additionally, if we had implemented just-in-time authentication
in the conventional solution, it would have forced us to change multiple mod-
ules, causing code scattering. The AspectJ-based solution will improve the modu-
larity of the solution and avoid code scattering. Let’s take a look.

10.4.1 Developing the solution

In this section, we will create a base aspect that we can use to authenticate any
system and a subaspect of it that will enable the banking system’s authentication
mechanism. To enable authentication in your system, all you need to do is
extend the base aspect and provide a list of operations that need authentication
in the pointcut. Listing 10.9 shows the base aspect that modularizes the authen-
tication functionality.

package auth;

import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

➥

Listing 10.9 AbstractAuthAspect.java: the base authentication aspect

Authenticated subject b

Pointcut for operations
needing authentication c

334 CHAPTER 10
Authentication and authorization
 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }
}

The aspect stores the authenticated subject in an instance variable. By storing
the authenticated subject and checking for it prior to invoking the login logic,
we avoid asking for a login every time a method that needs authentication is
called. After a successful login operation, we can obtain this member from the
LoginContext object.

 In our implementation, we will use the whole process as the login scope.
Once a user is logged in, he will never have to log in again during the lifetime of
the program. Depending on your system’s specific requirements, you may want
to move this member to an appropriate place. For example, if you are writing a
servlet, you may want to keep this member in the session object. We also assume
that a user, once logged in, never logs out. If this is not true in your system, you
need to set this member to null when the current user logs out.
The abstract pointcut is meant to be defined in subaspects capturing all the
operations needing authentication.
The before advice to the authOperations() pointcut ensures that our code per-
forms authentication logic only if this is the first time during the program’s life-
time that a method that needs authentication is being executed. If it is the first

Authentication
advice

 d

Authentication
logic

 e

Authentication
exception

 f

 b

 c

 d

Authentication: the AspectJ way 335
time, _authenticatedSubject will be null, and the authenticate() method will be
invoked to perform the core authentication logic. When subsequent join points
that need authentication are executed, because the _authenticatedSubject is
already not null the login process won’t be carried out.

 Since the LoginException is a checked exception, the before advice cannot
throw it. Throwing such exceptions would result in compiler errors. We could have
simply softened this exception using the declare soft construct. However, following
the exception introduction pattern discussed in chapter 8, we instead define a con-
cern-specific runtime exception that identifies the cause of the exception, should a
caller wish to handle the exception.
The core authentication operation is performed in this method. If the login fails,
it throws a LoginException that aborts the program. If the login succeeds, it
obtains the subject from the login context and sets it to the instance variable
_authenticatedSubject.
AuthenticationException is simply a RuntimeException that wraps the original
exception.

Adding authentication functionality to banking is a now a simple matter of writing
an aspect, as shown in listing 10.10, that extends AbstractAuthAspect and defines
the authOperations() pointcut. In our example, we define the pointcut to capture
calls to all methods in the Account and InterAccountTransferSystem classes.

package banking;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));
}

Although we have used just-in-time authentication in this example, you can eas-
ily implement up-front authentication by simply adding a pointcut correspond-
ing to the method that represents “up-front” for you, such as the main() method
in the console application or the frame initialization in a UI application. For
example, defining the authOperations() pointcut as follows will perform authen-
tication as soon as the main() method begins to execute:

 public pointcut authOperations()
 : execution(void banking.Test.main(String[]));

 e

 f

Listing 10.10 BankingAuthAspect.java: authenticating banking operations

336 CHAPTER 10
Authentication and authorization
With such a pointcut, the authentication advice will kick in as soon as the pro-
gram starts entering the main() method. Further, when you choose up-front
authentication, you can write an additional advice that tests for authentication
status before executing a method that needs authenticated access. This advice
could simply throw a runtime exception, because accessing this method without
prior authentication is a violation.

10.4.2 Testing the solution

We now have the system equipped with authentication. When we compile the
new aspects with the classes and interfaces in section 10.2, along with the logging
aspect in listing 10.8, and run the test program, it prompts for a username and
password, as in the conventional solution developed earlier:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

As expected, this output is identical to that shown in section 10.3. We now have a
system with authentication modularized in one reusable abstract aspect and one
system-specific concrete aspect.

10.5 Authorization: the conventional way

The authorization process determines whether the user has sufficient credentials
to access certain functions within the system. Let’s consider a banking system

➥

➥

➥

Authorization: the conventional way 337
where the authorization rule specifies that only users with managerial credentials
may waive certain fees. We need to perform the following operations:

1 Authentication is a prerequisite to authorization; unless we are certain
that users are who they claim to be, there is no point in checking their
credentials. Therefore, we first need to verify that users have been
authenticated, and if they have not, we need to do so.

2 Then we need to retrieve users’ credentials. You can do this in various
ways depending on the authorization scheme you use. For example, the
authorization system could check a policy file to extract the credentials
associated with the authorized person.

3 Last, we need to verify whether those credentials are sufficient to access
the fee-waiving operation. For example, if a person has only the teller
credential and not the managerial credential, fee-waiving operations
won’t be available to that user.

10.5.1 Understanding JAAS-based authorization

While the exact way you use JAAS will depend on your system’s access control
requirements, a typical way to use it to perform authorization requires that you
follow these steps:

1 Perform authentication—The system first needs to authenticate the user
using a login or any suitable mechanism. Then it must obtain a verified
subject from the authentication subsystem. The Subject class encapsu-
lates information about a single entity, such as its identification and cre-
dentials. All subsequent operations that require authorization must
check that this subject has sufficient credentials to access the operations.

2 Create an action object—JAAS requires that each method that needs an
authorization check be encapsulated in an action object. This object must
implement either PrivilegedAction or PrivilegedExceptionAction.
Both interfaces contain just one method: run(). The only difference is
that the run() method has no exception declaration in the former inter-
face, whereas in the latter, it declares that it may throw an exception of
type Exception. In either case, the run() method needs to execute the
intended operation.

3 Execute the action object—The action object we just created needs to be
executed on behalf of the authenticated subject using static methods in

338 CHAPTER 10
Authentication and authorization
the Subject class: Subject.doAsPrivileged(Subject, PrivilegedAction,
AccessControlContext) or Subject.doAsPrivileged(Subject, Privileged-
ExceptionAction, AccessControlContext). In cases where doAsPrivileged()
is called with a PrivilegedExceptionAction parameter, if the run()
method throws a checked exception, it will wrap it inside Privileged-
ActionException before throwing it.

4 Check access—The methods that need to ensure authorized access must
check the subject’s credentials by calling the AccessController.check-
Permission() method and passing it a permission object that contains
the required permissions. If the user doesn’t have sufficient permissions,
this method throws an unchecked AccessControlException exception.

5 Create a system-level access control policy—At the system level, you write a
policy file that grants to a set of subjects permissions to certain opera-
tions. The AccessController.checkPermission() method indirectly uses
this policy file to grant access only to those operations that are allowed
by the accessing subject’s credentials and permissions.

10.5.2 Developing the solution

Now that we’ve looked at the changes needed in the system to implement
authorization, let’s look at the modifications we need to make in the banking
example. In listing 10.11, we define a simple permission class, BankingPermis-
sion. The name string passed in its constructor defines the permissions. We will
later map these strings in a security policy file to allow only certain users to
access certain functionality.

package banking;

import java.security.*;

public final class BankingPermission extends BasicPermission {
 public BankingPermission(String name) {
 super(name);
 }

 public BankingPermission(String name, String actions) {
 super(name, actions);
 }
}

Listing 10.11 BankingPermission.java: permission class for banking system authorization

Authorization: the conventional way 339
The class BankingPermission defines two constructors to match those in the base
BasicPermission class. The actions parameter in the second constructor is
unused and exists only to instantiate the permission object from a policy file. To
learn more, refer to the JDK documentation.

 Now let’s modify the AccountSimpleImpl class to check permission in each of
its public methods. Each change is simply a call to AccessController.check-
Permission() with a BankingPermission object as an argument. Each Banking-
Permission needs a name argument to specify the kind of permission sought. We
employ a simple scheme that uses the method name itself as the permission
string. Listing 10.12 shows the implementation of AccountSimpleImpl where
each method checks the permission before executing its core logic.

package banking;

import java.security.AccessController;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 AccessController.checkPermission(
 new BankingPermission("getAccountNumber"));

 ...

 }

 public void credit(float amount) {
 AccessController.checkPermission(
 new BankingPermission("credit"));

 ...

 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 AccessController.checkPermission(
 new BankingPermission("debit"));

 ...

 }

Listing 10.12 AccountSimpleImpl.java: the conventional way

340 CHAPTER 10
Authentication and authorization
 public float getBalance() {
 AccessController.checkPermission(
 new BankingPermission("getBalance"));

 ...

 }

 ... implementation for private methods ...
}

We now have an Account implementation that performs access checks for each
public operation. We must make similar changes to InterAccountTransferSystem
(we’ll omit that discussion here for brevity’s sake). Next, let’s look at the changes
needed in our test program (listing 10.13) that invokes these operations.

package banking;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 final Account account1 = new AccountSimpleImpl(1);
 final Account account2 = new AccountSimpleImpl(2);

 Subject authenticatedSubject = lc.getSubject();

 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedAction() {
 public Object run() {
 account1.credit(300);
 return null;
 }}, null);
 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {

Listing 10.13 Test.java: the conventional way

Authorization: the conventional way 341
 public Object run() throws Exception {
 account1.debit(200);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }
 }
}

Clearly, we’ve had to use too much code. For each operation needing access con-
trol, we create an anonymous class extending either PrivilegedExceptionAction

342 CHAPTER 10
Authentication and authorization
or PrivilegedAction, based on whether the operation can throw a checked
exception. The run() method of each anonymous class simply calls the operation
under consideration.

 We put the calls to the methods that are routed through a PrivilegedException-
Action object in a try/catch block. In the catch block, we check to see if the cause
for the exception is an InsufficientBalanceException. If so, we throw that excep-
tion because the caller of the business method would expect it to be Insufficient-
BalanceException and not PrivilegedExceptionAction. Please refer to the JDK
documentation for PrivilegedExceptionAction for more details on how the
checked exceptions are handled differently than the runtime exceptions.

 While we use anonymous classes here, we could have used named classes as
well. Each named class would require a constructor taking all the parameters of
the method. It would then store those parameters as instance variables. Later,
while implementing the run() method, it would pass the stored instance vari-
ables to the method.

 We could have also combined all the operations into one action by creating a
single PrivilegedExceptionAction and routing all the actions through it. How-
ever, we did not do so in order to better mimic the real system, where not all the
operations that need authorization will be in one or two places. Further, combining
several methods into one action requires that you consider exception-handling
carefully. By routing the methods individually through the PrivilegedException-
Action class, you can handle an exception thrown by each method separately and
make the appropriate decisions. With the combined method, you will need to
handle the exceptions thrown by a set of methods together. While such an
arrangement may not always be a problem, you need to consider it anyway.

10.5.3 Testing the solution
Let’s see if the solution works. To do so, we add authorization logging to the
AuthLogging aspect, as shown in listing 10.14.

package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {

Listing 10.14 AuthLogging.java: adding authorization logging

Authorization: the conventional way 343
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : call(void Account.credit(..))
 || call(void Account.debit(..))
 || call(* Account.getBalance(..))
 || call(void InterAccountTransferSystem.transfer(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut authorizationActivities()
 : call(* Subject.doAsPrivileged(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities()
 || authorizationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The aspect in listing 10.14 modified the one in listing 10.8 to add a new point-
cut, authorizationActivities(), and include that pointcut in the loggedOpera-
tion() pointcut.

 In the BankingPermission class (listing 10.11), the constructor took an argu-
ment name that was a string defining the permissions for the system. We said that
we would later map name to a security policy file to allow only certain users to
access certain functionality. Let’s define that security policy file now. We want to
permit testUser to be able to carry out all the operations in the banking system.
Listing 10.15 shows the policy file that grants testUser the permissions to access
all the operations (credit, debit, getBalance, and transfer).

grant Principal sample.principal.SamplePrincipal "testUser" {
 permission banking.BankingPermission "credit";
 permission banking.BankingPermission "debit";
 permission banking.BankingPermission "getBalance";
 permission banking.BankingPermission "transfer";
};

Listing 10.15 security.policy: the policy file for authorization

344 CHAPTER 10
Authentication and authorization
When we compile and run the test program, it not only asks for a name and
password, but also executes all the operations that have been authorized through
Subject.doAsPrivileged():

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<doAsPrivileged>
 <credit>
<doAsPrivileged>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

The output shows that each method that needs authorization is called in the con-
text of the doAsPrivileged() method. We will compare this output to one using
AspectJ-based authorization in section 10.6; we expect them to be identical.

 If you want to learn more about JAAS, modify the security policy file to see
the effect of different permissions. This will allow you to see how JAAS prevents
certain users from accessing a set of operations while allowing others to access
those operations.

 Now extend this problem to a real system and try to answer the following
question: Which operations in your system need to be authenticated/authorized?
The answer will not be easy to come by. You will have to examine all the modules
and create a list of operations that perform access control checks. This task is
laborious and error-prone.

➥

➥

➥

Authorization: the conventional way 345
10.5.4 Issues with the conventional solution

Let’s summarize the problems posed by the conventional object-oriented solution:
■ Scattering of decisions—The decision for operations to be checked against

permissions is scattered throughout the system, and therefore any modifi-
cations to it will cause invasive changes.

■ Difficulty of determining access-controlled operations—Consider the same prob-
lem of deciding if an operation needs to perform authorization checks
from the business component developer’s point of view. Since deciding
whether an operation needs authorization depends on the system using
the components, it is even harder to identify these operations in compo-
nents than in system-specific classes.

■ The need to write a class for each access-controlled operation—For each simple
operation, you must write a named or anonymous class carrying out the
desired operation.

■ Incoherent system behavior—The implementation for authorizing a method
is separated into two parts: the callee and the caller. The callee side uses
AccessController.checkPermission() to check the permissions (as in list-
ing 10.12), whereas the caller side uses Subject.doAsPrivileged() to exe-
cute the operation on a subject’s behalf. Failure to check permissions on
the callee side may allow unauthorized subjects to access your system. On
the caller side, if you forget to use Subject.doAsPrivileged(), your opera-
tion will fail even if the user accessing the operation has the proper set of
permissions. If you don’t find and fix the problem during a code review or
a testing phase, it will pop up after the deployment, potentially causing a
major loss of business functionality.

■ Difficult evolution—Any change in authorization operations means making
changes in every place the call is made. Any such change will require that the
entire test be run through again, increasing the cost of the change.

This list demonstrates the sheer amount of code you will need to write. However,
the amount of code is not the biggest problem. Just examine the tangling of the
authorization code—it simply overwhelms the core logic. The conventional
methods force you to stuff the system-level authorization concern into every part
of the system. A utility wrapper can reduce the amount of code, but the funda-
mental problem of tangling remains unsolved.

346 CHAPTER 10
Authentication and authorization
10.6 Authorization: the AspectJ way

In extending the AspectJ solution to address authorization, we use the worker
object creation pattern described in chapter 8. As with authentication, AspectJ
enables you to add authorization to the system without changing the core imple-
mentation. In this section, we develop a reusable aspect that enables you to add
authorization to your system by simply writing a few lines for a subaspect.

10.6.1 Developing the solution

To recap, using JAAS to implement authorization involves routing the authorized
call through a class that implements either PrivilegedExceptionAction or
PrivilegedAction, depending on whether the operation throws checked excep-
tions. As you saw in section 10.5, the conventional solution requires the coding of
both classes implementing PrivilegedAction and their invocations. The worker
object creation pattern takes the pain out of this process. Without this pattern,
we would have to implement classes for each operation that needs authorization.
We could still use AspectJ to provide around advice to intercept each of the oper-
ations separately and to create and execute the corresponding, hand-written action
objects through Subject.doAsPrivileged(Subject, PrivilegedAction, AccessControl-
Context), or Subject.doAsPrivileged(Subject, PrivilegedExceptionAction, Access-
ControlContext). Now, with the use of a worker object creation pattern, instead
of writing a class for each operation that needs authorization, we simply write an
aspect that advises all corresponding join points of such operations to auto-
create worker classes and execute them through Subject.doAsPrivileged().

 The result is a real savings in the amount of code we have to write, since the
concern is modularized within just one aspect. Listing 10.16 shows the base
aspect that implements the authorization concern in addition to authentication.

package auth;

import org.aspectj.lang.JoinPoint;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {

Listing 10.16 AbstractAuthAspect.java: adding authorization capabilities

Authorization: the AspectJ way 347
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 public abstract Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart);

 Object around()
 : authOperations() && !cflowbelow(authOperations()) {
 try {
 return Subject
 .doAsPrivileged(_authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 return proceed();
 }}, null);
 } catch (PrivilegedActionException ex) {
 throw new AuthorizationException(ex.getException());
 }
 }

 before() : authOperations() {
 AccessController.checkPermission(
 getPermission(thisJoinPointStaticPart));
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }

Pointcut for
operations
that need
authorization

 b

Method that
obtains the
needed
permissions

 c

Around advice
that creates and

executes the
worker object

 d

Permissions
checking

 e

348 CHAPTER 10
Authentication and authorization
 public static class AuthorizationException
 extends RuntimeException {
 public AuthorizationException(Exception cause) {
 super(cause);
 }
 }
}

This aspect routes every call that needs authorization through an anonymous
class implementing the PrivilegedExceptionAction interface. By inserting pro-
ceed() in the implemented run() method, we take care of wrapping all opera-
tions that require any type and number of arguments, as well as any type of
return value. This pattern saves us from writing a class for each operation that
needs authorization.

 Let’s examine the aspect in more detail:
The authOperations() abstract pointcut is identical to the one in the authentica-
tion solution we presented earlier. When we define the pointcut in the subaspect,
we will list all the operations that need authentication, which are the same as the
ones that need authorization. Later, toward the end of chapter, we show you a
simple modification you can use if you have to separate the list for operations
that need authentication from those that need authorization.
This abstract method allows the subaspects to define the permission needed for
the captured operation. It passes the static information about the captured join
point to the getPermission() method in case the permission depends on a class
and method for the operation.
This around advice first creates a worker object for the captured operation and then
executes it using Subject.doAsPrivileged() on behalf of the authenticated subject.
By using the && operator to combine the authOperations() pointcut with !cflowbe-
low(authOperations()), we ensure that the worker object is created only for the top-
level operations that need authorization. Note that we do not need to separately
route an operation if it is already in the control flow of another routed operation.
This before advice determines whether the caller of the method has sufficient
permissions. Note we did not put the logic to check permissions in the preceding
around advice. This is because we first need to create the worker object and pass
it to Subject.doAsPrivileged(); only then can we check for the permissions
called by the worker object.
AuthorizationException is simply a RuntimeException that wraps the original
exception.

Authorization
exception

 f

 b

 c

 d

 e

 f

Authorization: the AspectJ way 349
Notice how the two before advice and an around advice to the authOperations()
pointcut are lexically arranged. (Please refer to section 4.2.4 for more informa-
tion about how lexical ordering of advice in an aspect affects their precedence.)
This arrangement is critical for the correct functioning of this aspect. With this
arrangement the advice is executed as follows:

1 The first before advice is executed prior to executing the join point. This
advice performs the authentication, if needed, and obtains an authenti-
cated subject after authenticating.

2 The around advice is executed next. It creates a wrapper worker object and
invokes it using Subject.doAsPrivileged(). This results in calling the
original captured join point when the advice body encounters proceed().

3 The second before advice is executed just prior to proceeding with the
execution of the captured join point. Essentially, think of the before
advice as being called right before the proceed() method in the around
advice. This advice uses AccessController.checkPermission() to check
the permission needed.

In summary, by controlling the precedence, we ensure that authentication occurs
before authorization; we verify the identity of the subject before we check the
permissions for that subject.

 To enable authorization in our banking system, we must modify Banking-
AuthAspect to implement the abstract getPermission() method. This is all we
have to change in order to enable authorization—the reusable base aspect takes
care of all the complexities. Listing 10.17 shows BankingAuthAspect, which
enables authorization in our example banking system.

package banking;

import org.aspectj.lang.JoinPoint;

import java.security.Permission;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));

Listing 10.17 BankingAuthAspect.java: adding authorization capabilities

350 CHAPTER 10
Authentication and authorization
 public Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart) {
 return new BankingPermission(
 joinPointStaticPart.getSignature().getName());
 }
}

In this concrete aspect, we add a definition for the getPermission() method. In
our implementation, we return a new BankingPermission class with the name of
the method obtained from the join point’s static information as the permission
identification string. This permission scheme is identical to the one we used for
the conventional solution in listing 10.15.

10.6.2 Testing the solution

When we compile all the classes and aspects and run the test program, we see
output similar to the following:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main"

 auth.AbstractAuthAspect$AuthorizationException:
 banking.InsufficientBalanceException: Total balance not sufficient

Note that the output is nearly identical to that in section 10.5.4. However, there
are a few differences. The first difference is that the login occurs in a different

➥

➥

➥
➥

Authorization: the AspectJ way 351
place due to the just-in-time policy. Second, the log for each operation occurs
before the log for the doPrivileged() method that routed the operation. This
is because the logging aspect has a higher precedence, and its before advice is
applied before the around advice in AbstractAuthAspect. Refer to chapter 4,
section 4.2, for details on aspect precedence rules. Also note that the type of
exception thrown by the last transfer() call is not the expected Insufficient-
BalanceException. This behavior is due to the fact that any exception thrown by
the PrivilegedExceptionAction.run() method is wrapped in an Authorization-
Exception. Since we cannot throw a checked exception of a type other than that
declared by the method itself, we wrap the exception in a runtime exception
AbstractAuthAspect.AuthorizationException.

 We can remedy the situation by simply adding one more aspect, modeled
after the exception introduction pattern in chapter 8, to the system. This aspect’s
job is to catch the AbstractAuthAspect.AuthorizationException thrown by any
method that could throw an InsufficientBalanceException and check the cause
of the thrown exception. If the cause’s type is InsufficientBalanceException, it
then throws the cause exception instead of AuthorizationException. Listing 10.18
shows the implementation of this logic in an aspect.

package banking;

import auth.AbstractAuthAspect;

public aspect PreserveCheckedException {
 after() throwing(AbstractAuthAspect.AuthorizationException ex)
 throws InsufficientBalanceException
 : call(* banking..*.*(..)
 throws InsufficientBalanceException) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)cause;
 }
 throw ex;
 }
}

In this case, the only exception that we need to preserve is InsufficientBalance-
Exception. Now when we compile all the classes and aspects, we see that the
checked exception is preserved:

Listing 10.18 PreserveCheckedException.java: aspect preserving checked exceptions

352 CHAPTER 10
Authentication and authorization
> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:
Total balance not sufficient
... the rest of call stack

We now have an aspect-oriented solution to authentication and authorization for
the banking system. The most beneficial characteristics of this solution are:

■ You can add functionality without touching even a single core source file.
■ The specifications are captured in a single aspect.
■ The base aspect that implements most of the functionality is reusable.

You now should be able to write a simple subaspect of this reusable aspect to get
a comprehensive access-controlled system.

 Now that we have a modularized implementation of authorization concerns,
we can quickly react to any changes in the authorization requirements. For exam-
ple, consider data-driven authorization in a banking system where the creden-
tials needed for performing the fee-waiving operations depend on the amount
involved. We can implement this requirement easily by capturing the join points
corresponding to the fee-waiving operations and collecting the waived amount
as a context. We then advise such join points to check the credentials based on
the amount. Consider another requirement: providing the opportunity for re-
login with a different identity upon determining that the credentials with the
current identity are not sufficient to perform an operation. We can easily imple-

➥

➥

Fine-tuning the solution 353
ment this functionality by modifying the authorization advice to present the user
with a login opportunity upon authorization failure. In a nutshell, the ease of
implementation brought forth by AspectJ-based authorization makes it practical
to implement useful variations of the core functionality.

10.7 Fine-tuning the solution

In this section, we examine a few finer points that you may want to consider
when customizing the access control solution for your system.

10.7.1 Using multiple subaspects

In most common situations, the list of operations that need authentication and
authorization is a system-wide consideration, similar to the solution in this chap-
ter. However, suppose each subsystem must control its list of operations. In this
case, you need multiple subaspects, one for each subsystem, each specifying
operations in the associated subsystem. For example, the following aspect
extends AbstractAuthAspect to authenticate all the public operations in the
com.mycompany.secretprocessing package:

public aspect SecretProcessingAuthenticationAspect {
 extends AbstractAuthAspect {
 public pointcut authOperations() :
 execution(public * com.mycompany.secretprocessing.*(..));
}

Using this scheme, you can include multiple subaspects in a system, each specify-
ing a list of join points needing authentication and authorization. Then the
advice in the base aspect applies to join points captured by the pointcut in each
subaspect. This is similar to the participant pattern, in which each class controls
the subaspect that defines the pointcuts for the class. However, in this case the
subaspect defines the pointcuts for a subsystem, which results in greater flexibil-
ity and ease of maintenance for the owners of the subsystem.

 Remember that if you use multiple subaspects, the system will create an
instance of each of the concrete subaspects that share the common base aspect. If
you store the authenticated subject as an instance variable of the base aspect, as
we did in the solution in this chapter, the user will be forced to log in multiple
times—upon reaching the first join point captured by the pointcut in each con-
crete subaspect. You will need to store the authenticated subject in a different
way. For instance, if your authentication has program scope, you may want to
keep the authenticated subject as a static variable inside the AbstractAuthAspect.

354 CHAPTER 10
Authentication and authorization
10.7.2 Separating authentication and authorization

In the chapter’s solution, we used a single pointcut to capture both authoriza-
tion and authentication join points. While this scheme is fine in most cases,
there are situations when you need to separate these join points. For example,
consider a requirement for up-front login. You need the method corresponding
to the main entry in the program to be authenticated but not necessarily autho-
rized. Satisfying such a requirement is quite simple. First you need two point-
cuts: one for authentication and another for authorization. Then you must
modify the aspect we developed to separate out the authentication advice to
apply to the authentication pointcut, and you will have to modify the authoriza-
tion advice in a similar way.

 What happens if your authorization join point is encountered prior to an
authentication one? The solution depends on your system’s requirements. One
solution is to fall back to just-in-time authentication, thus performing authenti-
cation prior to the execution of the first method that needs to check authoriza-
tion (if the user was never authenticated). The easiest way to achieve this would
be to include an authorization pointcut in an authentication pointcut as well:

pointcut authenticatedOperations()
 : primaryAuthenticatedOperations() || authorizedOperations();

The other possibility is to simply throw an exception if an authorization join
point is reached before the user is authenticated. Checking to see if the
_authenticatedSubject is null in the authorization advice may be the easiest
option. Both the choices can be implemented easily, and the choice you make
depends on your system requirements.

10.8 Summary

The JAAS API provides a standard way to introduce authentication and authori-
zation into your system without requiring application developers to know the
complex implementation details. The conventional JAAS-based solution suffers
from code bloat and poses the problem of having no single place to list or
enforce authentication and authorization decisions. On a large system, this
makes it almost impossible to figure out which operations are being authorized.
Further, it separates the implementation on the caller side from the callee side.
Failing to add an authentication check on the caller side leads to making
resources unavailable to otherwise qualified users. Failing to add an authoriza-
tion check on the callee side, on the other hand, results in potential unautho-
rized access to the operations, compromising the system’s integrity.

Summary 355
 The beauty of an AspectJ solution for authentication and authorization lies in
modularizing the access control implementation into a few modules, separate
from the core system logic. You still use JAAS to perform the core part of authen-
tication and authorization, but you no longer need to have calls to its API all over
the system. By simply including a few aspects and specifying operations that
require access control, you complete the implementation. If you have to add or
remove operations under access control, you just change the list of operations
needing such control—no change is required to the core parts of the system. AOP
and AspectJ make authentication and authorization not only easy to implement
but also easy to evolve.

 By combining such aspects along with those in the rest of the book, you could
create an EJB-lite framework and benefit from improved control over the ser-
vices you need.

	Authentication and authorization
	10.1 Problem overview
	10.2 A simple banking example
	10.3 Authentication: the conventional way
	10.3.1 Implementing the solution
	10.3.2 Testing the solution

	10.4 Authentication: the AspectJ way
	10.4.1 Developing the solution
	10.4.2 Testing the solution

	10.5 Authorization: the conventional way
	10.5.1 Understanding JAAS-based authorization
	10.5.2 Developing the solution
	10.5.3 Testing the solution
	10.5.4 Issues with the conventional solution

	10.6 Authorization: the AspectJ way
	10.6.1 Developing the solution
	10.6.2 Testing the solution

	10.7 Fine-tuning the solution
	10.7.1 Using multiple subaspects
	10.7.2 Separating authentication and authorization

	10.8 Summary

