
APPENDIX

D
EJB Query Language

The EJB Query Language (EJB QL) first appeared as part of the EJB 2.0
specification. This has been enhanced and extended in the EJB 3.0 specification
and is now called the Java Persistence Query Language. The name change is part
of an effort to separate the Persistence part of the specification from the rest of
EJB. This has been done because the new Java Persistence API can stand alone
from EJB and even from Java Enterprise Edition containers.

JAVA PERSISTENCE QUERY LANGUAGE AND THE SPEC

At the time this book went to press, the EJB 3.0 specification was still in the
proposed final draft stage in the development process. At that time, the
language for queries was still referred to as the EJB Query Language (EJB QL).

EJB 3.0 entities are significantly different from EJB 2.x entity beans, and
thusin the final release of the specification a distinction was made by renaming
the associated query language the Java Persistence Query Language.

Since the appendices to the book are being presented in electronic format,
we were able to reflect the latest developments in the final release of the
specification.
For those familiar with the Structured Query Language (SQL), a lot of what

you see in this appendix will look familiar. There are some fundamental
differences, however. First, the Persistence query language is truly a standard.
While there are SQL standards, every Relational Database Management System
(RDBMS) vendor has added proprietary extensions. This had made it challenging
to migrate between RDBMS platforms. Another major difference between the
two is that SQL operates on tables and fields, whereas the Java Persistence Query

Language operates directly on objects and their properties. Visually, this
difference is subtle, but in practice, it completes the picture for EJB’s new
persistence layer; namely the emphasis on working with objects and not directly
with the database.

This appendix draws on the models and code examples from Chapter 9 in order
to explore the query language. At its most basic level, selects (queries), updates,
and deletes are covered. You will take a close look into the very complex
interactions that can be performed with these basic functions.

Although the specification does not indicate a convenient mnemonic (like EJB-
QL), this appendix refers to the Java Persistence query language as the JPQL.

Query Types and Naming

Before jumping into examples and the language constructs, here are a few formal
definitions.

Every expression in a JPQL query as a type. The type is derived from:

 * The abstract schema types of variable declarations
 * The types that persistent fields evaluate to
 * The types that relationships evaluate to
 * The structure of the expression
 * The types of literals

The abstract schema type is derived from a combination of the entity class
definition and the associated annotations. This includes every exposed persistent-
field, referred to as a state-field and every persistent relationship field referred to
as an association-field.

A JPQL query can involve all of the abstract schema types of all the entities
belonging to the same persistence unit. This is referred to as the query’s domain.

The association-fields defined in an entity will limit the domain of a query.
This is because other entities can only be reached through these association
fields. This is referred to as the navigability of an entity.

Entities are referenced in queries by their entity names as specified by the
@Entity annotation (or by the entity class name, which is the default behavior if
the name attribute is not used in the annotation). Here is a simple sample JPQL
query from Chapter 9:

SELECT r FROM RoadVehicleSingle r

Source 9.6 shows an entity class, RoadVehicle, with the entity name
RoadVehicleSingle. The abstract schema type is RoadVehicleSingle
because of the entity name.

The required minimum clauses are present in the above example. Namely, the
SELECT and FROM keywords (case is not important), the entity name, and an
alias (r in this case). In the next section, we will look into select statements in
more detail.

Query Structure

In this section, we will look at the various clauses, required and optional, that can
appear in queries. We will also look at bulk update and delete operations.

Select Statements
The SELECT statement is made up of a number of clauses. As mentioned in the
previous section, the SELECT and FROM clauses are required. Other clauses
include: WHERE, GROUP BY, HAVING, and ORDER BY. As you will see further
on, the WHERE clause is also used in updates and deletes. Let’s take a look at
each of these clauses in turn.
 * The SELECT clause determines the types that will be selected.
 * The FROM clause specifies the entities for which the other clauses will

apply.
 * The WHERE clause is used to restrict the results returned from the query.

This clause is optional.
 * The GROUP BY clause is used to results to be groups together. This

clause is optional.
 * The HAVING clause is used in conjunction with the GROUP BY clause to

filter grouped results. This clause is optional.
 * The ORDER BY clause is used to order the results. This clause is optional.

Let’s take a deeper look at the FROM clause, since it is so critical to
determining the domain of a query.

FROM in Depth

Identification variables are used in the FROM clause as placeholders for entities to
be included in the query domain. These identification variables have no
limitations on length but must conform to the Java rules for identifiers.

All identification variables are declared on the FROM clause and cannot be
declared in any of the other clauses. An identification variable cannot be a
reserved word or the name of any entity in the persistence unit and are case
insensitive.

The elements in the FROM clause will each have a value based on the type of
the expression used to identify the identification variable. In Chapter 9, you saw
the following query:

SELECT c FROM CompanyOMUni c JOIN c.employees e

The keyword INNER before the word JOIN is optional. The identification
variable e in the example above can have a value of any Employee that is
directly reachable (navigable) from CompanyOMUni (because of the JOIN,
which we will discuss below). The employees field is a collection of instances
of the abstract schema type Employee, and the variable e will refer to a
particular element of this collection.

Identification variables are processed from left to right. It is important to note
that an identification variable can make use of results from previous variable
declarations.

An identification variable can be followed by the navigation operator (.),
followed by a field of the entity. This is called a path expression. In the above
example, c.employees is a path expression.

One of the fundamental features of the JPQL is the ability to perform joins.
We have seen some examples of this, but in the next subsection we will look at
joins more explicitly.

Joins

In the JPQL, we have three join types at our disposal: inner, outer, and fetch. An
inner join, often referred to as the relationship join, is most commonly used to
retrieve results associated by foreign key relationships.

With an inner join, if the entity being joined to does not have a value, the
result will not be included in the result set of entities. Recall Figure 9.4. We had
a Company entity related to the Employee entity in a one-to-many relationship.
That is, in a given company, there can be many employees. Let’s suppose that in
our database we have the arrangement as shown in Tables D.1 and D.2

ID NAME
1 M*Power Internet Service, Inc.
2 Sun Microsystems
3 Bob’s Bait and Tackle

Table D.1 Company

ID NAME COMPANY_ID
1 Micah Silverman 1
2 Tes Silverman 1
3 Rima Patel 2

4 James Gosling 3

Table D.2 Employee

The following query would return the three Company entities.

SELECT DISTINCT c FROM CompanyOMBid c

However, the following query will only return two Company entities.

SELECT DISTINCT c FROM CompanyOMBid c JOIN c.employees

The inner join causes only companies for which employees exist to be
returned. Since Bob’s Bait and Tackle does not have any employees associated
with it, it is not included in the collection of results.

Left outer joins behave in just the opposite way from inner joins. That is, they
allow entities to be retrieved when the matching join condition is absent. If we
change the above SQL to the following, all three companies are retrieved once
again:

SELECT DISTINCT c FROM CompanyOMBid c LEFT JOIN c.employees

The keyword OUTER, which would appear in between the words LEFT and
JOIN, is optional.

A FETCH join allows for the fetching of associated entities as a side effect of a
query. Since we are talking only about a side effect, associated entities cannot be
referenced as an identification variable. Also, the association on the right side of
the FETCH join must belong to an entity that is returned from the query. In the
following query, the collection of employees associated with a company will be
fetched as a side effect.

SELECT DISTINCT c FROM CompanyOMBid c JOIN FETCH c.employees

Performing a fetch join supersedes FetchType.LAZY attributes declared as
part of a relationship annotation. That is, if lazy fetching was defined for an
associated entity but a query is performed that specifies a fetch join, the
associated entity will be populated as if FetchType.EAGER has been set.

The IN keyword is used to specify collection member declarations. The
parameter to IN is a collection-valued path expression. The following query will
result in a single Company entity being returned. Note the use of IN in the query.
The identification variable e designates a single Employee in the collection of
employees.

SELECT DISTINCT c
FROM CompanyOMBid c, IN(c.employees) e
WHERE e.name='Micah Silverman'

We are going to wrap up this section on the FROM clause with two important
notes. First, the FROM clause in a JPQL query is treated in much the same way as
a SQL FROM clause. Namely, identification variables impact the results of a
query even without the presence of a WHERE clause. The second note is on
polymorphic behavior. The FROM clause automatically designates all subclasses
of the explicitly declared entity. The entities returned from the query will include
subclass instances that satisfy the query.

The WHERE Clause
The WHERE clause is used to limit the result from a SELECT statement or to limit
the scope of an UPDATE or DELETE statement. A conditional expression follows
the WHERE keyword. Conditional expressions are also used in the HAVING
clause, described below.

Conditional Expressions

In this subsection we will examine conditional expressions in depth. These
language constructs are used in the WHERE or HAVING clauses.

Literals
String literals are enclosed in single quotation marks. A string literal that
contains a single quotation mark must be identified by two single quotation
marks. Here is an example of the string literal, don’t:

'don''t'

It should be noted that string literals cannot be escaped in the same way as
special characters in Java String literals.

Numeric and floating point literals conform to the same syntax as Java integer
and floating point literals, respectively.

Enum literals conform to the Java syntax for enum literals. The enum class
must be specified as part of the expression.

Boolean literals are TRUE and FALSE.

Identification Variables
Any identification variable appearing in the WHERE clause must have been
defined in the FROM clause. Remember, identification variables represent a
member of a collection and do not ever designate the collection in it is entirety.

Input Parameters
Input parameters can be referenced by position or can be named parameters.
These should not be mixed in the same query. Note that input parameters can
only appear in the WHERE or HAVING clause of a query.

Positional parameters are indicated by a question mark (?) followed by a
number indicating the position of the input parameter. Input parameters start at
the number 1. The same parameter can be used more than once in a query string.
Also, the order of the parameters in the query string does not have to be
sequential. Here’s an example:

Query q =
 em.createQuery("SELECT c FROM CompanyOMBid c WHERE c.name = ?1").
 setParameter(1,"M*Power Internet Services, Inc.");

Named parameters are indicated by a colon (:) followed by a name. Named
parameters are case sensitive. Here is an example:

Query q =
 em.createQuery("SELECT c FROM CompanyOMBid c WHERE c.name = :cname").
 setParameter("cname","M*Power Internet Services, Inc.");

Composition
Conditional expressions are composed of the following:
 * Other conditional expressions
 * Comparison operations
 * Logical operations
 * Boolean values resulting from path expressions
 * Boolean literals
 * Boolean input parameters

Arithmetic operations can be used in comparison operations. Arithmetic
operations are composed of the following
 * Other arithmetic operations
 * Numeric values resulting from path expressions
 * Numeric literals
 * Numeric input parameters

Parentheses () can be used in the standard way for expression evaluation.
The following is a representation of conditional expressions in Backus Naur

Form (BNF):
All BNF syntax is taken from the final release of the JSR 220: Enterprise
JavaBeans, version 3.0, Java Persistence API.

conditional_expression ::= conditional_term | conditional_expression OR
conditional_term
conditional_term ::= conditional_factor | conditional_term AND
conditional_factor
conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |
(conditional_expression)
simple_cond_expression ::=
 comparison_expression |
 between_expression |
 like_expression |
 in_expression |
 null_comparison_expression |
 empty_collection_comparison_expression |
 collection_member_expression |
 exists_expression

We will look at each of the types expressions below. First, a note on operator
precedence.

Here are the operators in decreasing order of precedence:
 * Navigation (.)
 * Arithmetic:
 * +,- unary
 * *,/
 * +,- add, subtract
 * Comparison: =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT]

LIKE, [NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT]
MEMBER OF,

 * Logical:
 * NOT
 * AND
 * OR

Between Expressions
Here is the BNF syntax for between expressions:

arithmetic_expression
[NOT] BETWEEN

arithmetic_expression
AND

arithmetic_expression |
string_expression

[NOT] BETWEEN
string_expression

AND
string_expression |
datetime_expression

[NOT] BETWEEN
datetime_expression

AND
datetime_expression

Note that:

n BETWEEN m AND o

is equivalent to:

m <= n AND n <= o

Here is an example of BETWEEN logic drawing on the examples based on
Figure 9.1 in Chapter 9:

SELECT r FROM RoadVehicleSingle r WHERE r.numPassengers between 4 AND 5

IN Expressions
Here is the BNF syntax for [NOT] IN expressions:

in_expression ::=
state_field_path_expression [NOT] IN

(in_item {, in_item}* | subquery)
in_item ::= literal | input_parameter

The state_field_path_expression has to evaluate to an enum,
numeric, or string value.

The type in_item value must be the same type or a type that is compatible
with the state_field_path_expression type. Likewise, the results from a
subquery must be the same type or a type that is compatible with the
state_field_path_expression type. Subqueries are discussed below.

Here is an example of IN logic drawing on the examples based on Figure 9.1
in Chapter 9:

SELECT r FROM RoadVehicleSingle r WHERE r.numPassengers IN(2,5)

LIKE Expressions
Here is the BNF syntax for [NOT] LIKE expressions:

string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The pattern_value must be a string literal or input parameter with a string
value. The underscore (_) is a special character that stands for any single
character. The percent sign (%) is a special character that stands for any sequence
of characters. The optional ESCAPE escape_character clause is used to
indicate an escape character or input parameter with character value. This is used
to suppress the special meaning of the underscore and percent sign in the
pattern_value.

Here is an example of LIKE logic drawing on the examples based on Figure
9.1 in Chapter 9:

SELECT r FROM RoadVehicleSingle r WHERE r.make LIKE 'M%'

NULL and Empty Collection Comparisons
Here is the BNF syntax for IS [NOT] NULL expressions:

{single_valued_path_expression | input_parameter } IS [NOT] NULL

A NULL comparison returns a collection of values indicating whether or not
those values resolve to NULL.

Here is an example of NULL logic drawing on the examples based on
Figure 9.1 in Chapter 9:

SELECT r FROM RoadVehicleSingle r WHERE r.model IS NOT NULL

Here is the BNF syntax for IS [NOT] EMPTY expressions:

collection_valued_path_expression IS [NOT] EMPTY

The expression is a test that indicates whether or not the referenced collection
is empty or not.

Here is an example of EMPTY logic drawing on the examples based on Figure
9.4 in Chapter 9:

SELECT c FROM CompanyOMBid c WHERE c.employees IS NOT EMPTY

Collection Member Expressions
Here is the BNF syntax for MEMBER [OF] expressions:

entity_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_expression ::=

single_valued_association_path_expression |
simple_entity_expression

simple_entity_expression ::=
identification_variable | input_parameter

The expression determines whether or not the value of entity_expression
is a member of the collection returned from
collection_valued_path_expression.

Here is an example of MEMBER OF logic drawing on examples based on
Figure 9.4 in Chapter 9:

"SELECT e FROM EmployeeOMBid e, CompanyOMBid c
 WHERE e MEMBER OF c.employees"

EXISTS, ALL, or ANY Expressions
Here is the BNF syntax for EXISTS expressions:

exists_expression::= [NOT] EXISTS (subquery)

An EXISTS expression is true only if the specified subquery returns at least
one result. We will look at subqueries below.

Here is the BNF syntax for ALL or ANY expressions:

all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

Any or all comparisons involve the result of a subquery. If ALL is specified,
then every single result of the subquery must be true for the comparison. If ANY
or SOME is specified, then at least one of the results in the subquery must be true
for the comparison. Valid comparison operators are =, <, <=, >, >=, <>. We will
look at subqueries below.

Subqueries
Subqueries can be used in the WHERE and HAVING clauses. In the interest of
completeness, we will show the BNF syntax for subqueries, but it is basically
everything that we have discussed thus far within parentheses. Here is the syntax:

subquery ::=
 simple_select_clause subquery_from_clause
 [where_clause] [groupby_clause] [having_clause]
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
subquery_from_clause ::=
 FROM subselect_identification_variable_declaration
 {, subselect_identification_variable_declaration}*
subselect_identification_variable_declaration ::=
 identification_variable_declaration |
 association_path_expression [AS] identification_variable |
 collection_member_declaration
simple_select_expression::=
 single_valued_path_expression |
 aggregate_expression |
 identification_variable

Here is an example of a subquery based on Figure 9.4 from Chapter 9:

SELECT c FROM CompanyOMBid c WHERE
(SELECT COUNT(e) FROM c.employees e) = 0

It should be noted that in a future release of the specification, subqueries may
be supported in the FROM clause. For this release, subqueries are not supported in
the FROM clause.

Functional Expressions

The JPQL has a number of built-in functions that can be used in the WHERE and
HAVING clauses. This section examines each of these functions.

String Functions
Here is the BNF syntax for the string functions:

functions_returning_strings ::=
 CONCAT(string_primary, string_primary) |
 SUBSTRING(string_primary,
 simple_arithmetic_expression,

simple_arithmetic_expression) |
 TRIM([[trim_specification] [trim_character] FROM]

string_primary) |
 LOWER(string_primary) |
 UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics::=
 LENGTH(string_primary) |
 LOCATE(string_primary, string_primary[,
 simple_arithmetic_expression])

CONCAT returns a string that is a combination of the two strings passed in as
parameters, one after the other.
SUBSTRING takes two numeric arguments indicating the start position and

length (respectively) of the string to be returned. The substring is taken from the
string passed in as the first argument.
TRIM will remove spaces from the beginning and the end of the specified

string by default. If a character other than space is to be trimmed, it can be
indicated through trim_character. The keyword LEADING can be used to
specify that the trim should be done from the beginning of the string. TRAILING
can be used to specify that the trim should be done from the end of the string.
BOTH trims both ends and is the default behavior.
LOWER will convert the supplied string to all lowercase.
UPPER will convert the supplied string to all uppercase.
LENGTH returns the length of the supplied string.
LOCATE will search for a string (the first parameter) within a string (the

second parameter) and return its position. If its position is not found, 0 is
returned. The first position in string is 1. An optional third parameter specifies
the starting position in the string to be searched. If it is not supplied, then the
starting position is 1.

Arithmetic Functions
Here is the BNF syntax for the arithmetic functions:

functions_returning_numerics::=
ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) |
MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
SIZE(collection_valued_path_expression)

ABS returns the absolute value of the supplied arithmetic expression.
SQRT returns the square root of the supplied arithmetic expression.
MOD returns the modulo value (the remainder) of the two supplied parameters.
SIZE returns the number of elements in the supplied collection.

Datetime Functions
Here is the BNF syntax for the datetime functions:

functions_returning_datetime:=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP

These functions return the date, time, and timestamp values (respectively)
from the underlying database.

GROUP BY and HAVING Clauses
The GROUP BY clause enables grouping functions based on set of properties. The
HAVING clause allows further restriction of this grouping by placing conditions
on the GROUP BY clause.

If both a WHERE clause and GROUP BY clause are present in the query, the
WHERE clause will be applied first, followed by the forming of the groups
according to the GROUP BY clause.

When using GROUP BY, the structure of the SELECT clause follows the rules
from SQL. Namely, any item appearing in the SELECT clause must also be
specified in the GROUP BY clause. The only exception to this rule areexception
to this rule is expressions in the SELECT clause that are aggregate functions.

The HAVING clause specifies search conditions over the grouped items (or
aggregate functions that apply to the grouped items).

It should be noted that while with SQL it is allowable to have a HAVING clause
without a GROUP BY clause (implying that all the elements of the SELECT clause
are aggregate functions), portable Java Persistence API applications should not
rely on this. Implementers of the specification are not required to support a
HAVING clause without the presence of a GROUP BY clause.

More on SELECT
We opened our discussion of the JPQL with SELECT. In this section, we will
present the formal syntax for the SELECT clause. Here is the BNF syntax for the
SELECT clause:

select_clause ::= SELECT [DISTINCT] select_expression
{, select_expression}*

select_expression ::=
single_valued_path_expression |

aggregate_expression |
identification_variable |
OBJECT(identification_variable) |
constructor_expression

constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)

constructor_item ::= single_valued_path_expression |
aggregate_expression

aggregate_expression ::=
{ AVG | MAX | MIN | SUM }
([DISTINCT] state_field_path_expression) |
COUNT ([DISTINCT] identification_variable |
state_field_path_expression |

single_valued_association_path_expression)

It is interesting to note the capability of returning the result into a newly
constructed Object using the NEW keyword of the SELECT clause. Take a look at
the following example:

SELECT NEW EmpInfo(e.name,e.sex) FROM EmployeeOMBid e

This presumes the existence of a Java class named EmpInfo with a
constructor that takes two parameters. The types of the parameters from the
SELECT clause must match the signature defined in the class.

A SELECT clause can have the following return types:
 * An expression that represents a state field results in an object of the same

type as that state field in the referenced entity.
 * An expression that represents an association results in an object of the

type of the relationship as defined in the entity and the object relational
mapping.

 * An identification variable results in the object of the referenced entity
 * The result of an aggregate expression (discussed below) is determined by

the aggregate expressions used.
 * The result type of a constructor expression is an object of the class for

which the constructor is defined.
 When multiple select expressions are present, the result is an object array

(Object[]) with elements in the same order as specified in the SELECT clause.

ORDER BY Clause
The ORDER BY clause allows the returned values to be ordered in a certain way.
Here is the BNF syntax for ORDER BY:

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]

The orderby_item must appear in the SELECT clause or else the query will
be invalid.

The sequential order of the orderby_item elements determines the
precedence of the ordering (from left to right).
ASC indicates that the order should be ascending.
DESC indicates that the order should be descending.

Bulk Updates and Deletes
Bulk update and delete operations are performed over a single entity and,
potentially, its subclasses. Here is the BNF syntax:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name

[[AS] identification_variable] SET update_item {, update_item}*
update_item ::= [identification_variable.]{state_field |

single_valued_association_field} = new_value
new_value ::= simple_arithmetic_expression |

string_primary |
datetime_primary |
boolean_primary |
enum_primary
simple_entity_expression |
NULL

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM abstract_schema_name [[AS]

identification_variable]

The syntax of the WHERE clause is as described above.
A DELETE operation applies only to the specified entity (and subclasses). It

will not cascade to related entities.
New values specified as part of an update must be compatible with the fields

of the entity being updated.
Bulk updates result in a direct corresponding database operation that bypasses

optimistic locking checks. To achieve 100% portability, applications should
update a version field and/or validate this field to ensure data integrity.

The persistence context is not synchronized when performing a bulk update or
delete operation.

Bulk update and delete operations have the potential to create inconsistencies
between entities and the database. To mitigate this, these operations should be
performed in a separate transaction or at the beginning of a transaction before
entities have been synchronized with the persistence context.

Summary

This appendix provided a thorough look at the newly named Java Persistence
Query Language. You saw that it looks and behaves much like SQL but is
completely database platform–independent and operates on entities rather than
tables.

While the JPQL continues to be a part of the EJB specification, it can stand on
its own. Vendors are starting to write out-of-container persistence managers that
take advantage of the JPQL.

For more information, refer to the JSR 220: “Enterprise JavaBeans, Version
3.0, Java Persistence API.”

	Query Types and Naming
	Query Structure
	Select Statements
	FROM in Depth
	Joins

	The WHERE Clause
	Conditional Expressions
	Literals
	Identification Variables
	Input Parameters
	Composition
	Between Expressions
	IN Expressions
	LIKE Expressions
	NULL and Empty Collection Comparisons
	Collection Member Expressions
	EXISTS, ALL, or ANY Expressions
	Subqueries

	Functional Expressions
	String Functions
	Arithmetic Functions
	Datetime Functions

	GROUP BY and HAVING Clauses
	More on SELECT
	ORDER BY Clause
	Bulk Updates and Deletes

	Summary

