
APPENDIX

E
EJB Quick Reference Guide

This appendix is a quick reference for programmers to use during EJB
development. In the first section, you’ll find Figures E.1 through E.17,
illustrating what’s really going on in an EJB system. Some of these are taken
directly from the EJB specification, and some have been created by us; we have
condensed the diagrams and commented on them to clarify their meaning. You’ll
also find summaries and explanations of each method in the EJB API, as well as
a transaction reference.

NOTE
Even though session beans and message-driven beans as defined in EJB
2.1 and earl ier EJB specif ications are supported in EJB 3.0 containers,
we wil l not provide reference to APIs relevant to these. Also, as with the
rest of the book, we do not cover the EJB 2.1–defined enti ty beans in this
appendix even though they are part of the EJB 3.0 specif ication. This
appendix focuses sole ly on EJB 3.0–defined POJO session beans and
message driven beans, and Java Persistence API entit ies . You can refer to
the previous edit ions of this book to get information on session beans,
message-driven beans, and entity beans as defined in EJB 2.x and EJB 1.1
specif ications.

Session Bean Diagrams

Figure E.1 The client’s view of a session bean object life cycle.

Stateless Session Bean Diagrams

Figure E.2 The life cycle of a stateless session bean. Each method call shown is an
invocation from the container to the bean instance.

Figure E.3 Sequence diagram depicting two phases of the life cycle of stateless
session bean: addition of a bean instance to the stateless session bean pool and
retrieval of a stateless session bean’s business interface reference by the client.

Figure E.4 Sequence diagram depicting the other two phases of the life cycle of
stateless session bean: servicing a business method and removing a bean instance
from the stateless session bean pool.

Figure E.5 The Web services client view of a stateless session bean. The client can
be a Java or non-Java client.

Stateful Session Bean Diagrams

Figure E.6 The life cycle of a stateful session bean (does not implement
javax.ejb.SessionSynchronization). Each method call shown is an
invocation from the container to the bean instance.

Figure E.7 The life cycle of a stateful session bean (implements
javax.ejb.SessionSynchronization). Each method call shown is an
invocation from the container to the bean instance.

Figure E.8 Sequence diagram depicting the two phases of the life cycle of a stateful
session bean: retrieval of a stateful session bean’s business interface reference by
the client, and servicing a business method.

Figure E.9 Sequence diagram depicting the other two phases of the life cycle of a
stateful session bean: passivation and activation.

Figure E.10 Sequence diagram depicting the execution of a transactional method on
a stateful session bean when the javax.ejb.SessionSynchronization
interface is implemented, as well as the removal of the bean instance.

Message Driven Bean Diagrams

Figure E.11 The life cycle of a message driven bean. Each method call shown is an
invocation from the container to the bean instance.

Figure E.12 Sequence diagram for message driven beans. For simplicity, the
Container object represents all container subsystems, including home objects,
transaction services, and so on.

Java Persistence API Diagrams

Figure E.13 The life cycle of a Java Persistence API defined entity.

NOTE
Given that more often than not container-managed transaction-scoped
enti ty managers wil l be used in EJB applications, we have decided, for
the sake of simplicity , to focus on the l i fe cycle of Java Persistence API
enti t ies that use container-managed transact ion-scoped enti ty managers.

Figure E.14 Sequence diagram depicting the deployment of a persistence unit, as
well as retrieval of an instance of a container-managed transaction-scoped entity
manager.

Figure E.15 Sequence diagram depicting the two phases of the life cycle of a Java
Persistence API entity: persisting a new entity, and synchronizing the modified state
of a managed entity to the database.

Figure E.16 Sequence diagram for the other two phases of life cycle of a Java
Persistence API entity: detaching an entity instance, and merging an entity instance.

Figure E.17 Sequence diagram for the final phase of life cycle of a Java Persistence
API entity: removing the entity.

NOTE
Once again, note that the preceding entity sequence diagrams take into
consideration only the scenarios pertaining to a container-managed
transaction-scoped entity manager.

EJB API Reference

The following sections explain the Enterprise JavaBeans API used in EJB 3.0–
style POJO bean development. These APIs are defined in the javax.ejb
package. Evidently, the APIs involved in development of EJB 3.0 POJO beans
are simpler and fewer as compared to those of the earlier versions. Since we have
provided a reference to all the standard annotations defined in the EJB
specification in Appendix B, this Appendix covers only the interface and class
APIs.

EJBContext
An EJBContext object is a container-implemented object. Your bean can use an
EJB context to enquire about its environment from the container. For instance,
the bean can invoke methods on an EJBContext object to determine its current
transactional status, security status, and more. Each container, therefore, must
make an EJBContext object available to your enterprise bean at runtime. This
interface is extended by the SessionContext, EntityContext, and
MessageDrivenContext interfaces to provide additional functionality
specific to those bean types.

The EJB 3.0 defined session and message driven beans can get access to
EJBContext instance through a resource injection mechanism. Source E.1
provides the definition of this interface, and Table E.1 gives a brief explanation
of the methods of this interface.

public interface javax.ejb.EJBContext
{
 public javax.ejb.EJBHome getEJBHome();

 public javax.ejb.EJBLocalHome getEJBLocalHome();

 public java.util.Properties getEnvironment();

 public java.security.Identity getCallerIdentity();

 public java.security.Principal getCallerPrincipal();

 public boolean isCallerInRole(java.security.Identity role);

 public boolean isCallerInRole(String roleName);

 public javax.transaction.UserTransaction getUserTransaction()
 throws java.lang.IllegalStateException;

 public void setRollbackOnly()
 throws java.lang.IllegalStateException;

 public boolean getRollbackOnly()
 throws java.lang.IllegalStateException;

 public javax.ejb.TimerService getTimerService()
 throws java.lang.IllegalStateException;

 public java.lang.Object lookup(String name);
}

Source E.1 The javax.ejb.EJBContext interface.

Table E.1 javax.ejb.EJBContext

METHOD EXPLANATION

getEJBHome() This method returns the bean’s remote
home interface object. Since EJB 3.0–
style POJO beans do not have a home
interface, this method is applicable to
enterprise beans that use the previous
EJB programming model.

getEJBLocalHome() Same as getEJBHome() except this
retrieves the local interface version.

getEnvironment() This is a deprecated method, and its use
is heavily discouraged. In order to gain
access to the bean’s environment, use the
JNDI naming context java:comp/env
instead.

getCallerIdentity() This is a deprecated method, and its use
is heavily discouraged. Use
getCallerPrincipal() method
instead.

getCallerPrincipal() Retrieves the current logged-in user’s
security principal. You can use this
principal to query a database or perform
other operations.

isCallerInRole(Identity) This is a deprecated method, and its use
is heavily discouraged. Use
isCallerInRole(String) instead.

isCallerInRole(String) Asks the container if the current logged-in
user is in a particular security role. Useful
for programmatic security.

getUserTransaction() Retrieves the JTA (Java Transaction API)
UserTransaction interface to perform
programmatic transactions. Only
enterprise beans with bean-managed
transaction demarcation can use this
method.

setRollbackOnly() If something goes horribly wrong inside
your bean, you can call this method to
force the current transaction to roll back.
Only enterprise beans with container-
managed transaction demarcation can use
this method.

getRollbackOnly() Asks the container if the transaction is
doomed to rollback. If it’s doomed, you
can avoid performing computer-intensive
operations.

getTimerService() Returns TimerService object to
access the EJB timer service from the
enterprise bean.

SessionContext
A session context is a specific EJB context used only for session beans. Source
E.2 provides the definition of this interface, and Table E.2 gives a brief
explanation of the methods of this interface.

public interface javax.ejb.SessionContext
 extends javax.ejb.EJBContext
{
 public javax.ejb.EJBLocalObject getEJBLocalObject()
 throws java.lang.IllegalStateException;

 public javax.ejb.EJBObject getEJBObject()
 throws java.lang.IllegalStateException;

 public javax.xml.rpc.handler.MessageContext getMessageContext()
 throws java.lang.IllegalStateException;

 public <T> T getBusinessObject(Class<T> businessInterface)
 throws java.lang.IllegalStateException;

 public java.lang.Class getInvokedBusinessInterface()
 throws java.lang.IllegalStateException;
}

Source E.2 The javax.ejb.SessionContext interface.

Table E.2 javax.ejb.SessionContext

METHOD EXPLANATION

getEJBLocalObject() Returns a reference to the EJB local object
associated with this context instance. This
method is useful if your bean wants to call
another local bean and while doing so,
wants to pass a reference to itself. Since
EJB 3.0–style POJO beans do not have an
object interface, this method is applicable to
enterprise beans that use the previous EJB
programming model.

getEJBObject() Same as getEJBLocalObject()
except that this retrieves the remote object
interface version.

getMessageContext() Returns the MessageContext object
associated with a stateless session bean
instance that implements a JAX-RPC Web
service endpoint. This MessageContext
object can then be used to retrieve
information about the Web service (SOAP)
message via its properties. Only stateless
session beans with a Web service endpoint
can use this method.

getBusinessObject(Class <T>) This method returns the session bean’s
business interface object, local or remote,
as specified in the argument. Only EJB 3.0–
style POJO session beans can call this
method.

getInvokedBusinessInterface() This method returns the session bean
business interface through which the bean
was invoked. You should use this method if
you have supported both remote and local
business interfaces, and want to check
through which interface the invocation on
the session bean was made, during
runtime. This method is disallowed if the
session bean does not define an EJB 3.0
business interface or was not invoked
through a business interface.

MessageDrivenContext
A message-driven context is a specific EJB context used only for message-driven
beans. This interface serves as a marker interface. There are no specific
additional methods that message-driven beans have on their context objects.

SessionSynchronization
If your stateful session bean is caching database data in memory or needs to roll
back in-memory conversational state upon a transaction abort, you should
implement this interface. The container will call each of the methods in this
interface automatically at the appropriate times during transactions, alerting you
to important transactional events. Each of these methods can throw a
java.rmi.RemoteException or javax.ejb.EJBException. Source E.3
provides the definition of this interface and Table E.3 gives a brief explanation of
the methods of this interface.

public interface javax.ejb.SessionSynchronization
{
 public void afterBegin()
 throws javax.ejb.EJBException, java.rmi.RemoteException;

 public void beforeCompletion()
 throws javax.ejb.EJBException, java.rmi.RemoteException;

 public void afterCompletion(boolean committed)
 throws javax.ejb.EJBException, java.rmi.RemoteException;
}

Source E.3 The javax.ejb.SessionSynchronization interface.

Table E.3 javax.ejb.SessionSynchronization

METHOD DESCRIPTION

afterBegin() Called by the container directly after a
transaction begins. You should read in
any database data you want to cache in
your stateful session bean during the
transaction. You should also create a
backup copy of your state in case the
transaction rolls back.

beforeCompletion() Called by the container right before a
transaction completes. Write out any
database data you’ve cached during the
transaction.

afterCompletion(boolean) Called by the container when a
transaction completes either in a commit
or an abort. True indicates a successful
commit; false indicates an abort. If an
abort happened, revert to the backup
copy of your state to preserve your
session bean’s conversation.

TimedObject

If your session or message-driven beans want to implement timer expiration
notification methods so that containers can call back ejbTimeout() on
javax.ejb.TimedObject after a certain period has elapsed, you should
implement this interface. Source E.4 provides the definition of this interface, and
Table E.4 gives a brief explanation of the method of this interface.

public interface javax.ejb.TimedObject
{
 public void ejbTimeout (javax.ejb.Timer timer);
}

Source E.4 The javax.ejb.TimedObject interface.

Table E.4 javax.ejb.TimedObject

METHOD DESCRIPTION

ejbTimeout(Timer) Called by container upon timer expiration.
You should implement the bean logic that
you want to execute periodically in this
method.

Timer

This interface provides information about the timer created with the help of EJB
timer service, such as the next point when the timer expiration is scheduled to
occur, the number of milliseconds that will elapse before the next scheduled
timer expiration occurs, and much more. An instance of javax.ejb.Timer is
initialized by the container and passed to your bean as an argument when it calls
ejbTimeout() on the javax.ejb.TimedObject interface. Source E.5
provides the definition of this interface, and Table E.5 gives a brief explanation
of the methods of this interface.

public interface javax.ejb.Timer
{
 public void cancel()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;

 public long getTimeRemaining()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;

 public java.util.Date getNextTimeout()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;

 public java.io.Serializable getInfo()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;

 public javax.ejb.TimerHandle getHandle()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;
}

Source E.5 The javax.ejb.Timer interface.

Table E.5 javax.ejb.Timer

METHOD DESCRIPTION

cancel() Call this method if you want to cancel all
the expiration notifications associated with
the given timer instance.

getTimeRemaining() Returns the number of milliseconds that
will elapse before the next scheduled
timer expiration.

getNextTimeout() Returns the future point at which the next
timer expiration is scheduled to occur.

getInfo() Returns the information associated with
the given timer at the time of its creation. If
no Serializable information object
was provided at the time of creation, then
this method returns null.

getHandle() Returns the Serializable timer
handle that can be persisted by your bean
for later reuse.

TimerHandle

A timer handle is a persistent reference to an EJB timer object. All EJB timers
implement this interface. Timer handles allow your beans to persist the timer
object for later reuse so that the bean does not have to create a new timer object.
Source E.6 provides the definition of this interface, and Table E.6 gives a brief
explanation of the methods of this interface.

public interface javax.ejb.TimerHandle
 extends java.io.Serializable
{
 public javax.ejb.Timer getTimer()
 throws java.lang.IllegalStateException,
 javax.ejb.NoSuchObjectLocalException,
 javax.ejb.EJBException;
}

Source E.6 The javax.ejb.TimerHandle interface.

Table E.6 javax.ejb.TimerHandle

METHOD DESCRIPTION

getTimer() Returns the reference to the timer object
represented by the given handle. Use this
method to retrieve the timer object
reference from a persisted timer object.

TimerService

This interface provides your enterprise beans with access to the EJB timer service
implemented by the EJB container. Source E.7 provides the definition of this
interface, and Table E.7 gives a brief explanation of the methods of this interface.

public interface javax.ejb.TimerService
{
 public javax.ejb.Timer createTimer (long duration,
 java.io.Serializable info)
 throws java.lang.IllegalArgumentException,
 java.lang.IllegalStateException,
 javax.ejb.EJBException;

 public javax.ejb.Timer createTimer (long initialDuration,
 long intervalDuration, java.io.Serializable info)
 throws java.lang.IllegalArgumentException,
 java.lang.IllegalStateException,
 javax.ejb.EJBException;

 public javax.ejb.Timer createTimer (java.util.Date expiration,
 java.io.Serializable info)
 throws java.lang.IllegalArgumentException,
 java.lang.IllegalStateException,
 javax.ejb.EJBException;

 public javax.ejb.Timer createTimer (java.util.Date
 initialExpiration, long intervalDuration,
 java.io.Serializable info)
 throws java.lang.IllegalArgumentException,
 java.lang.IllegalStateException,
 javax.ejb.EJBException;

 public java.util.Collection getTimers()
 throws java.lang.IllegalStateException,
 javax.ejb.EJBException;
}

Source E.7 The javax.ejb.TimerService interface.

Table E.7 javax.ejb.TimerService

METHOD DESCRIPTION

createTimer(long,
Serializable)

Creates a one-time expiration timer, which
becomes inactive after the first (and last)
expiration. The second argument
represents a Serializable object
containing application-specific information.
If you do not have any information to
associate with the given timer, then pass
null as the second argument.

createTimer(long, long,
Serializable)

Creates a recurrently expiring timer whose
first expiration occurs after a given
duration (in milliseconds) specified in the
first argument has elapsed, and
subsequent expirations occur after the
duration (in milliseconds) specified in the
second argument elapses. Subsequent
expirations are scheduled relative to the
time of the first expiration. If expiration is
delayed for some reason, two or more
expiration notifications may occur in close
succession.

createTimer(Date,
Serializable)

Creates a one-time expiration timer that
expires at a given time.

createTimer(Date, long,
Serializable)

Creates a recurrently expiring timer whose
first expiration occurs at the time specified
by the first argument, and subsequent
expirations occur after the duration (in
milliseconds) specified in the second
argument elapses. Subsequent expirations
are scheduled relative to the time of the
first expiration. If expiration is delayed for
some reason, two or more expiration
notifications may occur in close
succession.

getTimers() Retrieves a collection of all the timers
associated with the given bean.

EJB Exception Reference

Table E.8 describes the purpose of each exception class relevant to the new EJB
3.0 programming model.

Table E.8 EJB Exception Explantations

EXCEPTION DESCRIPTION

EJBException Your enterprise bean class should throw this
exception to indicate an unexpected error, such as
a failure to open a database connection, or a JNDI
exception. Your container treats this exception as
a serious problem and may take action such as
logging the event or paging a system
administrator, depending upon your container’s
policy. For an EJB 3.0 bean, if the problem is
encountered at the protocol level, then an
EJBException instance wrapping
RemoteException is thrown by the container.
Since EJBException is a
RuntimeException, it does not need to be
declared in throws clauses.

ConcurrentAccessException Concurrent calls from clients to a stateful session
bean are disallowed. If a client invokes a business
method on an instance of a stateful session bean
when another method invocation from the same or
a different client is already in progress, the
container will throw this exception to the client of
the subsequent invocation. Under some
deployment scenarios, such as when the
application server is clustered, concurrent
requests to a stateful session bean instance might
be queued. However, this behavior is not
guaranteed, and hence, clients should not rely on
this. The
javax.ejb.ConcurrentAccessExcepti
on is a subclass of
javax.ejb.EJBException.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
java.rmi.RemoteException instead.

EJBAccessException This subclass of javax.ejb.EJBException
is thrown to the client when it tries to access an
EJB method for which it does not have security
permission. A caller is allowed to invoke a method
if, and only if, the method is specified as
PermitAll or the caller is assigned at least one
of the security roles that is included in the
method’s permission list.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
java.rmi.AccessException instead.

EJBTransactionRequiredExc
eption

When a bean’s method is marked with the
MANDATORY transaction attribute, the container
expects a client to invoke such a method within a
client-established transaction context. In the event
a client fails to do so, the container will throw this
exception. The
javax.ejb.EJBTransactionRequiredE
xception is subclass of
javax.ejb.EJBException.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
javax.transaction.TransactionRequ
iredException instead.

EJBTransactionRolledbackE
xception

A transaction in which the enterprise bean
participates can be rolled back at any time. In
such cases, any subsequent method calls on the
bean will result in the container throwing this
exception to the client. This is the container’s way
of informing the client that the transaction
associated with the request has been rolled back
or marked for a rollback, and that the requested
operation either could not be performed or was
not performed because further computation on
behalf of the transaction would be fruitless.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
javax.transaction.TransactionRoll
edbackException instead.

NoSuchEJBException If a client tries to call a method on a business
interface reference of a stateful session bean that
has been removed, the attempted invocation
results in this runtime exception.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
java.rmi.NoSuchObjectException
instead.

Transaction Reference

The following section offers reference information on transactions in EJB as
outlined in Tables E.9 through E.14.

Table E.9 The Effects of Transaction Attributes

TRANSACTION
ATTRIBUTE

CLIENT’S
TRANSACTION

BEAN’S
TRANSACTION

Required None
T1

T2
T1

RequiresNew None
T1

T2
T2

Supports None
T1

None
T1

Mandatory None
T1

Error
T1

NotSupported None
T1

None
None

Never None
T1

None
Error

Table E.10 Transaction Attributes

CONSTANT MEANING

NotSupported Your bean cannot be involved in a transaction at
all. When a bean method is called, any existing
transaction is suspended.

Never Your bean cannot be involved in a transaction at
all. When a bean method is called, if a transaction
is in progress, a javax.ejb.EJBException
is thrown back to the client.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
java.rmi.RemoteException instead of
javax.ejb.EJBException.

Required Your bean must always run in a transaction. If a
transaction is already running, your bean joins that
transaction. If no transaction is running, the EJB
container starts one for you.

RequiresNew Your bean must always run in a new transaction.
Any current transaction is suspended.

Supports If a transaction is already under way, your bean
joins that transaction. Otherwise, the bean runs
with no transaction at all.

Mandatory Mandates that a transaction must be already
running when your bean method is called, or a
javax.ejb.EJBTransactionRequiredE
xception is thrown back to the caller.
Note that if the business interface is a remote
business interface that extends
java.rmi.Remote, the client will receive the
javax.transaction.TransactionRequ
iredException instead of the
javax.ejb.EJBTransactionRequiredE
xception.

Table E.11 Permissible Transaction Attributes for Each Bean Type

TRANSACTION
ATTRIBUTE

STATELESS
SESSION
BEAN

STATEFUL
SESSION BEAN
IMPLEMENTING
SESSION
SYNCHRONIZATION

MESSAGE-
DRIVEN
BEAN

Required Yes Yes Yes

RequiresNew Yes Yes No

Mandatory Yes Yes No

Supports Yes No No

NotSupporte
d

Yes No Yes

Never Yes No No

Table E.12 Transaction Isolation Levels

ISOLATION
LEVEL

DIRTY
READS?

UNREPEATABLE
READS?

PHANTOM
READS?

READ
UNCOMMITTED

Yes Yes Yes

READ
COMMITTED

No Yes Yes

REPEATABLE
READ

No No Yes

SERIALIZABLE No No No

Table E.13 The javax.transaction.Status Constants for Transactional Status

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and
is active.

STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually
abort because it’s been marked for
rollback. This could be because some
party called setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to
be committed (during Phase One of the
two-phase commit protocol).

STATUS_PREPARED The current transaction has been
prepared to be committed (Phase One
is complete).

STATUS_COMMITTING The current transaction is in the process
of being committed right now (during
Phase Two).

STATUS_COMMITTED The current transaction has been
committed (Phase Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process
of rolling back.

STATUS_ROLLEDBACK The current transaction has been rolled
back.

STATUS_UNKNOWN The status of the current transaction
cannot be determined.

Table E.14 The javax.transaction.UserTransaction Methods for Transactional
Boundary Demarcation

METHOD DESCRIPTION

begin() Begin a new transaction. This
transaction becomes associated
with the current thread.

commit() Run the two-phase commit
protocol on an existing transaction
associated with the current thread.
Each resource manager will make
its updates durable.

getStatus() Retrieve the status of the
transaction associated with this
thread.

rollback() Force a rollback of the transaction
associated with the current thread.

setRollbackOnly() Call this to force the current
transaction to roll back. This will
eventually force the transaction to
abort. One interesting use of this is
to test out what your components
will do without having them
perform any permanent resource
updates.

setTransactionTimeout(int) The transaction timeout
is the maximum amount of time
that a transaction can run before
it’s aborted. This is useful to avoid
deadlock situations, when precious
resources are being held by a
transaction that is currently
running.

Java Persistence API Reference

The following sections explain the Java Persistence API used in development of
POJO style entities. These APIs are defined in the javax.persistence
package. Since Appendix B provids a reference to all the standard annotations
defined in Java Persistence API specification, this Appendix covers only the
interface and class APIs.

NOTE
Towards the very end, the EJB 3.0 Expert Group decided to rename EJB
Query Language, or EJB-QL, as Java Persistence Query Language. By the
t ime this change became known (around May 2006) , this book was
already in print . Since this Appendix was to be published electronical ly
on the book's companion Web si te , we were able to reflect this last-
minute change here. Hence, while in the book you’l l see us referring to
EJB Query Language, or EJB-QL, know that we are talking about Java
Persistence Query Language.

EntityManager
An EntityManager instance is associated with a persistence context. A
persistence context is associated with a set of entities such that for each persistent
entity identity there is a unique entity instance. Within the persistence context,
the entity instances and their life cycles are managed. The EntityManager
interface consists of methods to interact with the persistence context so as to
create, remove, find, and query persistent entities. Source E.8 provides the
definition of this interface, and Table E.15 gives a brief explanation of the
methods of this interface.

public interface javax.persistence.EntityManager
{
 public void persist(java.lang.Object entity);

 public <T> T merge(T entity);

 public void remove(java.lang.Object entity);

 public <T> T find (java.lang.Class<T> entityClass,
 java.lang.Object primaryKey);

 public <T> T getReference(java.lang.Class<T> entityClass,
 java.lang.Object primaryKey);

 public void flush();

 public void setFlushMode(
 javax.persistence.FlushModeType flushMode);

 public javax.persistence.FlushModeType getFlushMode();

 public void lock(java.lang.Object entity,
 javax.persistence.LockModeType lockMode);

 public void refresh(java.lang.Object entity);

 public void clear();

 public boolean contains(java.lang.Object entity);

 public javax.persistence.Query createQuery(
 java.lang.String qlString);

 public javax.persistence.Query createNamedQuery(
 java.lang.String name);

 public javax.persistence.Query createNativeQuery(
 java.lang.String sqlString);

 public javax.persistence.Query createNativeQuery(
 java.lang.String sqlString, java.lang.Class resultClass);

 public javax.persistence.Query createNativeQuery(
 java.lang.String sqlString,
 java.lang.String resultSetMapping);

 public void joinTransaction();

 public java.lang.Object getDelegate();

 public void close();

 public boolean isOpen();

 public javax.persistence.EntityTransaction getTransaction();
}

Source E.8 The javax.persistence.EntityManager interface.

Table E.15 javax.persistence.EntityManager

METHOD EXPLANATION

persist(Object) Call this method to make an entity object, passed
as the method argument, persistent and
managed.
The persistence provider will throw
javax.persistence.EntityExistsExc
eption if this operation is invoked on an entity
that already exists. The
javax.persistence.TransactionRequ
iredException is thrown if this method is
invoked outside of an transaction on a container-
managed entity manager instance with
transaction-scoped persistence context. Also, the
java.lang.IllegalArgumentExceptio
n is thrown if the object to be made persistable
and managed is not an entity type. Finally, the
method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

merge(T entity) This method allows for the propagation of state
from a detached entity onto the persistent entity
managed by the EntityManager.
The
javax.persistence.TransactionRequ
iredException is thrown if this method is
invoked outside of an transaction on a container-
managed entity manager instance with
transaction-scoped persistence context. Also, the
java.lang.IllegalArgumentExceptio
n is thrown if the method argument is not an entity
type or is a removed entity. Finally, the method
throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

remove(Object) This method removes the entity, which in turn will
remove the entity data (state) from the database
at or before transaction commit, or as a result of
the flush() operation.
The
javax.persistence.TransactionRequ
iredException is thrown if this method is
invoked outside of an transaction on a container-
managed entity manager instance with
transaction-scoped persistence context. Also, the
java.lang.IllegalArgumentExceptio
n is thrown if the method argument is not an entity
type or is a detached entity. Finally, the method
throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

find(Class<T>, Object) Use this method to find an entity by its primary
key. This method is not required to be invoked
within a transaction context. Thus, if an entity
manager with transaction-scope persistence
context is in use, the resulting entity will be
detached, and if an entity manager with an
extended persistence context is used, the
resulting entity will be managed.
The
java.lang.IllegalArgumentExceptio
n is thrown if the first method argument does not
denote an entity type or if the second argument is
not a valid type for that entity’s primary key. The
method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

getReference(Class<T>,
Object)

This method can be used to get an instance of an
entity; its class is specified in the first method
argument, and its primary key is supplied in the
second method argument. The instance state may
be lazily fetched.
If the requested entity does not exist in the
database, a
javax.persistence.EntityNotFoundE
xception is thrown either when the method is
called or when the instance state is first accessed.
Hence, your application should not assume the
availability of the instance state upon detachment,
unless you have accessed its state successfully
while the entity manager was open. The
java.lang.IllegalArgumentExceptio
n is thrown if the first method argument does not
denote an entity type or if the second argument is
not a valid type for that entity’s primary key. The
method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

flush() This method can be used to force synchronization
of persistence context with the database. This
synchronization involves writing any updates to
the persistent entities and their relationships (as
dictated by the specified cascading behavior) to
the database. Synchronization to the database
does not involve refreshing the state of managed
entities. The setFlushMode() operation on
EntityManager and Query APIs can be
used to control synchronization semantics.
It throws
javax.persistence.PersistenceExce
ption if the flush operation fails for some
reason. Since the flush() operation should always
be invoked from within a transaction, a
javax.persistence.TransactionRequ
iredException is thrown if this condition is
not met. The method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

setFlushMode(FlushModeT
ype)

Use this method to set the flush mode
(FlushModeType.AUTO or
FlushModeType.COMMIT) for all the entities
managed within the underlying persistence
context.
It throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

getFlushMode() Use this method to retrieve the current flush mode
setting.
The method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

lock(Object,
LockModeType)

Use this method to set the lock mode
(LockModeType.READ or
LockModeType.WRITE) for the supplied
entity.
The
javax.persistence.TransactionRequ
iredException is thrown if the method is
executed outside of a transaction.The
javax.persistence.PersistenceExce
ption is thrown if the client cannot support the
requested locking mode. For instance, a
persistence provider is not required to support
LockModeType.READ on a nonversioned
entity object. In this case, if the read lock mode is
still requested, and if the persitsence provider
does not support it, the provider will throw the
PersistenceException. The
java.lang.IllegalArgumentExceptio
n is thrown if the first method argument does not
denote an entity type or if the second argument is
not a valid type for that entity’s primary key. The
method throws
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

refresh(Object) This method should be invoked to refresh the
state of the entity instance from the database.
The method should always be invoked within an
active transaction when using container-managed
entity manager instance with transaction-scoped
persistence context. Failure to do so will result in
a
javax.persistence.TransactionRequ
iredException. The method throws a
javax.persistence.EntityNotFoundE
xception if the requested entity no longer
exists in the database. The
java.lang.IllegalArgumentExceptio
n is thrown if the method argument is not a valid
entity type. Also, it throws a
java.lang.IllegalStateException, if
invoked on a closed entity manager object.

clear() Call this method on entity manager instance to
clear the persistence context, which in turn will
cause all the entity objects for this persistence
context to become detached. In this process, all
the changes to entities that have not been flushed
to the database will not be persisted.
The method throws
java.lang.IllegalStateException if
invoked on a closed entity manager object.

contains(Object) This method can be used to check if the supplied
entity object belongs to the current persistence
context or not. It is the responsibility of an
application to ascertain that an instance is
managed in only a single persistence context.
Failure to do so—that is, if an entity instance is
managed in more than one persistence context—
can result in unexpected behavior. This method
can be useful in checking for this condition.
The
java.lang.IllegalArgumentExceptio
n is thrown if the method argument is not a valid
entity type and a
java.lang.IllegalStateException is
thrown if the method is invoked on a closed entity
manager object.

createQuery(String) This method will create an instance of
javax.persistence.Query in order to
execute the supplied Java Persistence Query
Language string.
The method throws
java.lang.IllegalArgumentExceptio
n if the supplied string does not follow the Java
Persistence Query Language syntax. Also, it
throws
java.lang.IllegalStateException if
the method is invoked on a closed entity manager
object.

createNamedQuery(String
)

This method creates an instance of
javax.persistence.Query in order to
execute a named query that might have been
defined using the Java Persistence Query
Language or in native SQL.
The method throws
java.lang.IllegalArgumentExceptio
n if a query with the supplied name has not been
defined. Also, it throws a
java.lang.IllegalStateException if
the method is invoked on a closed entity manager
object.

createNativeQuery(Strin
g)

Use this method to create an instance of
javax.persistence.Query in order to
execute the native SQL query string supplied as
the method argument.
The method throws a
java.lang.IllegalStateException if
invoked on a closed entity manager object.

createNativeQuery(Strin
g, Class)

This method creates an instance of
javax.persistence.Query to execute the
native SQL query string supplied in the first
argument and return the resulting instances of the
entity whose class type is supplied in the second
argument.
The method throws
java.lang.IllegalStateException if
invoked on a closed entity manager object.

createNativeQuery(Strin
g, String)

Use this method to create an instance of
javax.persistence.Query to execute the
native SQL query string passed in the first
argument, and populate the entities with the query
results as specified by the
SqlResultSetMapping definition (the
SqlResultSetMapping name is passed in
the second argument). This result set mapping
metadata definition can then be used by the
persistence provider to map the query results into
the expected entity objects. Mostly, if the results
of the query are limited to homogeneous entities,
the use of SqlResultSetMapping is not
required; in this case, you can use other simpler
variations of this method.
The method throws
java.lang.IllegalStateException if
invoked on a closed entity manager object.

joinTransaction() This method is used to associate an application-
managed entity manager instance, which was
created outside of an active JTA transaction, with
the current JTA transaction.
The method throws
javax.persistence.TransactionRequ
iredException if there is no current
transaction, and it throws
java.lang.IllegalStateException if
the method is invoked on a closed entity manager
object.

getDelegate() This method returns the underlying (wrapped)
provider object for the entity manager. The result
of this method varies across the persistence
providers.
The method throws
java.lang.IllegalStateException if
invoked on a closed entity manager object.

close() This method closes an application-managed
javax.persistence.EntityManager.
After this method is invoked, calls to all the other
methods on
javax.persistence.EntityManager
and any javax.persistence.Query
objects obtained from it, except for
getTransaction() and isOpen(), will
throw
java.lang.IllegalStateException.
The method also throws
java.lang.IllegalStateException if
invoked on a container-managed entity manager
instance.

isOpen() This method is used to determine whether the
entity manager is open.

getTransaction() This method returns an instance of
javax.persistence.EntityTransacti
on. This is a resource-level transaction object that
is mapped to the resource that underlies the
entities managed by the entity manager.
The method throws
java.lang.IllegalStateException
when invoked on a JTA entity manager instance.

EntityManagerFactory
An EntityManagerFactory is used to create an application-managed entity
manager instance. The persistence context associated with an application-
managed entity manager is standalone in that it is not propagated automatically
along with the underlying JTA transaction across the multiple entity manager
references for the given persistence unit. Hence, the application-managed entity
manager has an isolated persistence context that is not accessible to other entity
managers. Even though the need for application-managed entity managers is less
common in Java EE applications, all Java EE EJB and Web containers are
required to support it. Source E.9 provides the definition of this interface, and
Table E.16 gives a brief explanation of the methods of this interface.

public interface javax.persistence.EntityManagerFactory
{
 public javax.persistence.EntityManager createEntityManager();

 public javax.persistence.EntityManager createEntityManager
 (Map map);

 public void close();

 public boolean isOpen();
}

Source E.9 The EntityManagerFactory interface.

Table E.16 javax.persistence.EntityManagerFactory

METHOD EXPLANATION

createEntityManager() This method creates a new application-managed
entity manager instance.

createEntityManager(Map
)

Use this method to create a new application-
managed entity manager instance, thereby
utilizing the persistence properties passed in the
java.util.Map argument.

close() Close the entity manager factory instance. Once
an entity manager factory is closed, all the
associated entity manager instances are
considered to be in a closed state.

isOpen() Returns a boolean indicating whether the factory
instance is open or not.

EntityTransaction
An EntityTransaction interface represents a resource-level transaction
object that is used by an entity manager to control transactions of the resource
that underlies the entities managed by the entity manager. This interface is used
to demarcate transactions that are local to the resource. The instance of
EntityTransaction can be obtained by calling the getTransaction() on
an EntityManager object. Source E.10 provides the definition of this
interface, and Table E.17 gives a brief explanation of the methods of this
interface.

public interface javax.persistence.EntityTransaction
{
 public void begin();

 public void commit();

 public void rollback();

 public void setRollback();

 public boolean getRollback();

 public boolean isActive();
}

Source E.10 The javax.persistence.EntityTransaction interface.

Table E.17 javax.persistence.EntityTransaction

METHOD EXPLANATION

begin() Use this method to start the local transaction on
the underlying resource.
The method throws
java.lang.IllegalStateException if
the transaction is already active.

commit() Use this method to commit the current
transaction.
The method throws
java.lang.IllegalStateException if
there is no active transaction to commit. Also,
javax.persistence.RollbackExcepti
on is thrown to the client if the commit operation
fails for some reason. In this case, the persistence
provider will roll back the transaction.

rollback() Use this method to roll back the current
transaction.
The method throws
java.lang.IllegalStateException if
there is not active transaction to roll back. It also
throws a
javax.persistence.PersistenceExce
ption in case a rollback is not successful.

setRollbackOnly() Use this method to mark the current transaction
for a rollback.
It throws
java.lang.IllegalStateException if
the transaction is not active.

getRollbackOnly() Use this method to determine if the current
transaction has been marked for a rollback or not.
The method throws a
java.lang.IllegalStateException if
no transaction is active.

isActive() The method indicates whether a transaction is in
progress.
It throws a
javax.persistence.PersistenceExce
ption in case of an unexpected error.

Query
A javax.persistence.Query object represents the Query API, which can
be used for the execution of both static and dynamic Java Persistence Query
Language as well as EJB Query Language queries. A reference to the Query
object can be obtained by using the createQuery() and
createXxxQuery() methods of the
javax.persistence.EntityManager API. The Query API is quite
comprehensive in its support of various facilities for query execution. Source
E.11 provides the definition of this interface, and Table E.18 gives a brief
explanation of the methods of this interface.

public interface javax.persistence.Query
{
 public java.util.List getResultList();

 public java.lang.Object getSingleResult();

 public int executeUpdate();

 public javax.persistence.Query setMaxResults(int maxResult);

 public javax.persistence.Query setFirstResult(int startPosition);

 public javax.persistence.Query setHint(java.lang.String hintName,
 java.lang.Object value);

 public javax.persistence.Query setParameter(java.lang.String name,
 java.lang.Object value);

 public javax.persistence.Query setParameter(java.lang.String name,
 java.util.Date value,
 javax.persistence.TemporalType temporalType);

 public javax.persistence.Query setParameter(java.lang.String name,
 java.util.Calendar value,
 javax.persistence.TemporalType temporalType);

 public javax.persistence.Query setParameter(int position,
 javax.lang.Object value);

 public javax.persistence.Query setParameter(int position,
 java.util.Date value,
 javax.persistence.TemporalType temporalType);

 public javax.persistence.Query setParameter(int position,
 java.util.Calendar value,
 javax.persistence.TemporalType temporalType);

 public javax.persistence.Query setFlushMode(
 javax.persistence.FlushModeType flushMode);
}

Source E.11 The javax.persistence.Query interface.

Table E.18 javax.persistence.Query

METHOD EXPLANATION

getResultList() Calling this method executes the SELECT query
associated with the underlying
javax.persistence.Query instance. The
query results are returned as a
java.util.List of entity objects. If the
SELECT query has more than one select
expression, the returned List will be of type
Object[], that is, an object array.
The method throws
java.lang.IllegalStateException if
called for a DELETE or an UPDATE Java
Persistence query language statement.

getSingleResult() The method executes a SELECT query
associated with the underlying
javax.persistence.Query instance,
which returns a single result.
The method throws
javax.persistence.NoResultExcepti
on if there is no result as a part of executing the
query. It throws
javax.persistence.NonUniqueResult
Exception if more than one result is returned
as a part of executing the query. Finally, it returns
a java.lang.IllegalStateException
if called for a DELETE or an UPDATE Java
Persistence query language statement.

executeUpdate() This method should be used to execute an
UPDATE or a DELETE statement associated with
the underlying javax.persistence.Query
instance.
The method throws
javax.persistence.TransactionRequ
iredException when executed outside of an
active transaction. Also, it throws
java.lang.IllegalStateException if
called for a SELECT Java Persistence query
language statement.

setMaxResults(int) Use this method to specify the maximum number
of results to be retrieved upon execution of the
underlying query.
The method throws
java.lang.IllegalArgumentExceptio
n if the supplied method argument is a negative
integer.

SetFirstResult(int) Specify the position of the first result, of all the
results starting with the number 0, to retrieve.
The method throws
java.lang.IllegalArgumentExceptio
n if the supplied method argument is a negative
integer.

setHint(String, Object) This method is used to specify an implementation
specific hints in the areas of, say, locking,
caching, behavior of various things such as fetch
sizes when using joins, and so on.
The hint is silently ignored if the hint name passed
in the first method argument is not recognized by
the persistence provider. However, if the hint
name is recognized, then the provider can throw a
java.lang.IllegalArgumentExceptio
n, if the second argument is found invalid for the
specific provider.

setParameter(String,
Object)

This variation of the setParameter() method
binds the object, supplied in the second method
argument, to the parameter name, supplied in the
first method argument. Note that the use of
named parameters is defined only for the Java
Persistence query language and not for the native
queries. Hence, only positional parameter binding
may be used in a portable fashion for the native
queries.
The method throws
java.lang.IllegalArgumentExceptio
n if the parameter name specified in the first
method argument does not correspond to a
parameter in the query string or if the Object
argument supplied in the second parameter is of a
type different than what is expected.

setParameter(String,
Date, TemporalType)

This variation lets you bind an object of type
java.util.Date to a named parameter. The
third method argument,
javax.persistence.TemporalType, is
an enum value for identifying the temporal type of
the data, viz. date, time, or datetime, represented
by the Date object. This enum value helps the
persistence provider to properly persist the date
data to the underlying database.
The method throws
java.lang.IllegalArgumentExceptio
n if the parameter name specified does not
correspond to a parameter in the underlying query
string.

setParameter(String,
Calendar, TemporalType)

Use this method to bind an instance of
java.util.Calendar to a named
parameter.
The method throws
java.lang.IllegalArgumentExceptio
n if the parameter name specified does not
correspond to a parameter in the underlying query
string.

setParameter(int,
Object)

Use this variation of setParameter() method
to bind an object to the positional parameter.
The method throws
java.lang.IllegalArgumentExceptio
n if the supplied position does not correspond to a
positional parameter of the query, or if the
Object argument supplied in the second
parameter is of a type different than what is
expected.

setParameter(int, Date,
TemporalType)

Use this variation to bind an instance of
java.util.Date to a positional parameter.
The method throws a
java.lang.IllegalArgumentExceptio
n if the supplied position does not correspond to a
positional parameter of the query.

setParameter(int,
Calendar, TemporalType)

This variation of setParameter() binds an
instance of java.util.Calendar to a
positional parameter.
The method throws a
java.lang.IllegalArgumentExceptio
n if the supplied position does not correspond to a
positional parameter of the query.

setFlushMode(FlushModeT
ype)

Use this method to set the flush mode for the
query execution. The flush mode setting of the
javax.persistence.Query instance will
override that of the
javax.persistence.EntityManager for
purpose of synchronization of results obtained
through this query’s execution.

Note that query methods, except executeUpdate(), are not required to be
invoked within a transaction context.

Java Persistence API Exception Reference

Table E.19 describes the purpose of each exception class relevant to the Java
Persistence API programming model.

Table E.19 Java Persistence API Exception Explanations

EXCEPTION DESCRIPTION

EntityExistsException A persistence provider can throw this runtime
exception at the time of calling persist() or
flush() operations, or at the time of
transaction commit. It indicates that the entity
being persisted already exists in the database.

EntityNotFoundException This runtime exception can be thrown either
upon invoking the getReference() method
on
javax.persistence.EntityManager
or upon first accessing the state of an entity,
whose reference had been obtained by
getReference() method. The choice of
when to throw this exception has been left to the
persistence provider. But an important point to
note is that an application should not assume
that it will be successful in accessing the state
of an entity obtained through
getReference() method upon detachment,
unless it has done so (without an exception)
when the entity was being managed. Also, this
exception could be thrown by invoking the
refresh() operation for an entity that no
longer exists in the database.

NonUniqueResultException This runtime exception is thrown when
execution of a getSingleResult()
method on javax.persistence.Query
object returns more than one result.

NoResultException This runtime exception is thrown when
execution of a getSingleResult()
method on javax.persistence.Query
object returns zero results.

OptimisticLockException The persistence provider throws this runtime
exception when an optimistic locking conflict
occurs, during an API call such as merge()
operation or at the time of flush or commit,
depending on the provider implementation.
Optimistic locking ensures that any updates or
deletes to an entity’s underlying data take place
only when no intervening transaction has
updated or deleted this underlying data since
the state of the entity was last read from the
database. Any changes to an entity’s state that
would cause violation of the above constraint
will make the persistence provider throw this
exception and roll back the currently active
transaction.

PersistenceException This is the runtime exception that is thrown by
the persistence provider whenever a problem
occurs. It is the supertype of all other Java
Persistence API exceptions. All the instances of
javax.persistence.PersistenceExc
eption, except
javax.persistence.NoResultExcept
ion and
javax.persistence.NonUniqueResul
tException, will cause any currently active
transaction to be marked for a rollback.

RollbackException The persistence provider throws this runtime
exception when a call to the commit()
method on
javax.persistence.EntityTransact
ion fails. The EntityTransaction object
should be used for resource-local transaction
demarcation.

TransactionRequiredExcept
ion

This runtime exception is thrown by the
persistence provider when a transaction is
required but is not active during the invocations
of persist(), merge(), and the like.

The Java Persistence API Miscellaneous Reference

Table E.20 The Types of Entity Managers

TYPE MEANING

Container-managed The life cycle of the container-managed
entity manager is always managed
automatically, transparent to the
application, by the container. So also, the
persistence context is propagated
transparently with the JTA transaction by
the container.

Application-managed The life cycle of an application-managed
entity manager is controlled by the
application via the
javax.persistence.EntityMana
gerFactory instance. The persistence
contexts associated with the application-
managed entity managers is always
extended. Such an application-managed
extended persistence context is never
propagated with the transaction; in other
words, it is a standalone persistence
context. When a JTA transaction is used
with application-managed extended
persistence context, and when the entity
manager is created outside of the JTA
transaction, it is the responsibility of the
application to associate entity manager
with the JTA transaction (if so desired) by
calling joinTransaction() method
on EntityManager.

Table E.21 The Types of Container-Managed Persistence Contexts

TYPE MEANING

Transaction-scope A container-managed persistence context that is
defined to have a lifetime scoped to a single transaction.
A new container-managed transaction-scoped
persistence context is created when any method on an
entity manager object is invoked within an active JTA
transaction, and there is no current persistence context
already associated with that JTA transaction. The
container-managed transaction-scoped persistence
context ends when the associated JTA transaction is
committed or rolled back, and all the entities managed
by the entity manager become detached.

Extended A container-managed persistence context that is
defined to have a lifetime spanning multiple
transactions. A container-managed extended
persistence context can only be initiated within the
scope of a stateful session bean. It exists from the point
at which the stateful session bean, which declares a
dependency on an entity manager of type
javax.persistence.PersistenceContextT
ype.EXTENDED, is created. The persistence context
ends when the @Remove method of the stateful
session bean completes, or the bean is otherwise
destroyed.

Table E.22 The Types of Entity Managers Apropos Transactions Supported

TYPE MEANING

JTA Entity Manager A JTA transaction is managed externally to
the entity manager by the container.
An entity manager whose underlying
transactions are controlled through JTA in
this fashion is termed a JTA entity
manager. Since JTA transactions are
supported by all Java EE containers, a
container-managed entity manager must
be also a JTA entity manager. Note that an
application-managed entity manager can
also be a JTA entity manager.

Resource-local An entity manager whose transactions are
local to the resource and controlled by the
application through the
javax.persistence.EntityTran
saction API is termed a resource-local
entity manager. An application-managed
entity manager can opt to be a resource-
local entity manager.

	Session Bean Diagrams
	Stateless Session Bean Diagrams
	Stateful Session Bean Diagrams

	Message Driven Bean Diagrams
	Java Persistence API Diagrams
	EJB API Reference
	EJBContext
	SessionContext
	MessageDrivenContext
	SessionSynchronization

	TimedObject
	Timer
	TimerHandle
	TimerService
	EJB Exception Reference
	Transaction Reference
	Java Persistence API Reference
	EntityManager
	EntityManagerFactory
	EntityTransaction
	Query

	Java Persistence API Exception Reference
	The Java Persistence API Miscellaneous Reference

